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Abstract—Computing discrete two-dimensional (2-D) convolu- It is common to embed and K within larger images to avoid
tions is an important problem in image processing. In mathemat- wraparound effects. We will assume that any such transforma-

ical morphology, an important variant is that of oom_puting binary tions have already been applied and ignore wraparound.
convolutions, where the kernel of the convolution is a 0-1 valued

function. This operation can be quite costly, especially when large A binary convolutioris a special case of a discrete convolu-
kernels are involved. In this paper, we present an algorithm for - tion whereK is a 0—1 valued function. Binary convolutions are
computing convolutions of this form, where the kernel of the bi- of particular interest in computational morphology and digital

nary convolution is derived from a convex polygon. Because the - L
kernel is a geometric object, we allow the algorithm some flexibility geometry [21], [22]. For example, thidation of a digital shape,

in how it elects to digitize the convex kernel at each placement, as described by a 0-1 image by a digital kernelk described by

long as the digitization satisfies certain reasonable requirements. another such image can be expressed by computing the convolu-
We say that such a convolution isvalid. Given this flexibility we  tion Ix(— K'), and then thresholding this image so that all strictly
show that it is possible to compute binary convolutions more ef- positive values are mapped to 1. Herdl = {—pl|p € K} de-

ficiently than would normally be possible for large kernels. Our - . g
main result is an algorithm which, given anm x n image and a notes the reflection of{ with respect to the origin. See also

k-sided convex polygonal kemnel, computes a valid convolution [1] for an asymptotically efficient algorithm for computing di-

in O(kmmn) time. Unlike standard algorithms for computing cor-  lations of digital sets. Binary convolutions are also useful in
relations and convolutions, the running time is independent of the template matching [9] in binary images, through the use of the
area or perimeter of K, and our techniques do not rely on com- a|atad correlation operation. Our results apply to computing

puting fast Fourier transforms. Our algorithm is based on a novel bi lati L Bi luti h the fol
use of Bresenham'’s line-drawing algorithm and prefix-sums to up- Inary correlations as weil. binary convolutions have the 1ol-

date the convolution incrementally as the kernel is moved from one lowing geometrical interpretation. We can interpfetK (p) as

position to another across the image. placing a copy of- K at locationp of the image, and then com-
Index Terms—Approximation algorithms, correlations, digital puting the number of pixels dfthat are overlapped by K (p).
convolutions, digital geometry, mathematical morphology. One problem with computing discrete convolutions is that the

operation can be quite expensive when the kernel of the convo
lution is large. A naive algorithm for computing the convolu-
tion considers each placement of the r kernel, and computes
A FUNDAMENTAL problem in image processing is that ofthe weighted sum i)(¢r) time. Since there arewn possible
computingdiscrete convolution§s], [9], [12]. Consider pjacements, this results in an algorithm whose running time is
an image, which is given as a two-dimensional (2/B)x 7 O(mngr). Here we assume that< m andr < n, but these
array I of real numeric values, and @x r image arrayK, quantities may still be large. The question is whether we can im-
called thekernel (sometimes called gemplateor structuring prove on theyr factor, especially whegr is large.
elementin the literature). Theliscrete convolutiof9] of I with A number of approaches for improving the efficiency of con-

K, denoted byl « K, is defined to be volution computation have been proposed. Kim and Kim pro-
(T« Kz, gl => > Ia, b]- K[z —a, y — b]. posed a simple method based on the observation that in many
a b commonly used kernels the number of distinct nonzero elements
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There has also been extensive work on related decomposition | =
methods for grayscale kernels [8], [24]. i
The concepts of singular value decomposition (SVD) and
small generating kernel (SGK) have been used to speed up | =
the grayscale convolution processing time by decomposing
the kernel into separable filters and then decomposing each
separable filter as a sequence of SGK filters [16]. The speedup ' =
is obtained by using the kernels corresponding to the larger :
eigenvalues. The SVD/SGK methods, however, are useful only
in the case of grayscale convolutions.
Other methods involve using table lookup to avoid the cost
of multiplication [6], [25]. Burt proposed a technique based on Fig. 1. Valid digitizations.
the use of quadtrees [3]. However, these methods improve run-
ning times only by a constant factor. A common approach #mi-open unit square centeredjatalledg’s pixel
computing convolutions for large kernels is first to compute
the Fourier transforms of the image and kernel, denoted by m(9) ={(#, Ylge S < g +1,9y <y < gy +1}.

and K. Then the convolution « K can be approximated in he collection ofr(g) for all g € Z2 subdivides the real plane
O(mn) time by computing the elementwise prodiittk”, and  jntg a collection of pairwise disjoint semi-open unit squares. Let

then inverting the transform [9]. This approach requires on|ys think of them x n image as defining a functioh 22 — R,
O(mnlog(mn)) time, which is a significant savings. Howeverhere

for morphological and other discrete applications, it has the in- .
elegant property of converting an exact discrete problem intq/gy) = {I[m + 10y 9ol 1< g'“’ snandl < g, < m,
continuous problem. 0, otherwise.

In this paper we consider a significantly different approacithis mapping reflects the convention that image arrays are typ-
We consider the problem of computing binary convolutiongally indexed by row and column from the upper left corner.
where the kernel of the convolution is derived from a convesenceforth, our indexing will be done assuming the standard
polygon. We introduce the notion of alid digitization of (z, 4)-coordinate system.

a geometric shape. We present formal definitions later, butGiven a sef? ¢ R2? andt € R2, lett+ P denote the translate
intuitively, a digitization isvalid if pixels lying entirely inside of P by ¢, that is

the shape are in the digitization and pixels lying entirely

outside the shape are not in the digitization. We then define the t+P={t+plpeP}

notion of avalid convolution which is based on using valid e will call this translate th@lacemenof P att. Let —P =
digitizations of the kernel to perform the convolution. Diﬁeren{_mp € P}, and defing — P to bet + (—P).

placements of the kernel are allowed to use different digitiza- Gjven a set” ¢ R2, adigitizationis a mappingD(P) of P
tions. We show that with this added flexibility it is possiblg g set of grid points. A digitizatio®(P) C 72 is valid if for

to compute digitizations for convex polygonal kernels in timgyery pixel that lies entirely withid® the corresponding grid
that is independent of the area or perimeter of the kernel. Jint is in the digitization, and for every pixel that is entirely

particular, we show that a valid convolution of anx n image  gutside ofP the corresponding grid point is not in the digitiza-
with a k-sided convex polygonal kernel can be computed ipn. More formally,

O(kmn) time andO(mn) space. This type of convolution is

of interest in morphology applications, where the kernel can m(g) S P = g€ D(P)
be approximated by a convex polygon, or decomposed intaad
small number of convex polygons. k is small, this can be (r(g) NP =0) = g ¢ D(P).

significantly faster than existing approaches for large kernels.

The most closely related work to ours is that of box-filterinPixels that partially overlag” may or may not be in a valid dig-
[17]. However, box-filtering is limited to rectangular shapedtization. An example of a valid digitization is theidpoint dig-
Our approach is a generalization of the box-filtering method ttzation, denoted byD™ (), which consists of all grid points
nonrectangular convex polygons. The notion using continuotigt lie within P. (Fig. 1 shows valid digitizations of three dif-
mathematics in interpreting discrete morphological operatiofgfent placements of the same polygdnThe one in the center
has been considered elsewhere [11], [23]. A preliminai§ the midpoint digitization.)

version of this paper appeared in [14]. Given an imagd and any set of grid point&' C Z2, define
theweightof G relative tol to be the sum of the image values
of &
[I. DEFINITIONS AND NOTATION w(G) = Z 1(g).
geG

We begin with some definitions. L&’ denote the set of or-
dered pairs of integers, callggiid pointsand letR? denote the  Let K be a convex polygon in the plane, andlidte an image.
set of ordered pairs of reals. Givere 72, define 7(g) to be a We define themidpoint convolutiorof 7 by K to be anm x n
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imageC, whereC(t) is defined to be the weight of the midpoint . s ol T g ]

digitization of — K placed at, that is ¥ | i

b I &

Clt)=w(D"(t-K)= > I [k W & |

gC D™ (t—K) J ! )

A valid convolutionof I by K is defined in the same way, with . - L e

D™(t—K) replaced by any valid digitization ¢f- K. Note that % . | )

because valid digitizations are not unique, different placements

may be digitized differently. A valid convolution is a variation Fig. 2. Decomposing the kernel into primitive shapes.

of the standard binary convolution, subject to some flexibility

in the shape of the kernel. Our main result is the following. to each point of the image, the entire convolution for each primi-
Theorem 1: Given anm x n imagel and ak-sided convex tive shape can be computed@imn). Finally, we sum the con-

polyon K, a valid convolution off by K can be computed in volutions of allk primitive shapes, producing the convolution by

O(kmn) time andO(mn) space. K in O(kmn) total time. The various elements of the algorithm
Henceforth, to avoid the continual need for negations, we wire explained in detail in the following subsections.

assume that the kernel for the convolution-i#’, and so the

value of the convolution at each point is just the weight of sonfe Decomposition Into Primitive Shapes

valid digitization of a translate ok'. The union of the pixels of  As mentioned above, the first stage of the algorithm involves

the image forms themage rectangle?, where representingk’ as a weighted sum aP(k) primitive shapes

and the bounding bo¥. The representation is constructed by

first enclosingK in an axis-aligned bounding ba&, and then

All grid points outside this rectangle are assumed to have va@composing the differendg\ K into a collection of rectangles

0. We assume that the kerriglis represented by a cyclic listing @nd right triangles. We visit the vertices &fin cyclic order and
of its vertex coordinates. for each vertex we imagine shooting two bullets horizontally

and vertically away from the interior d&, until hitting either
the bounding boxB or a previous bullet’s path (see Fig. 2). It
. ) ] ] ] is easy to see that these bullet paths subdiBy&’ into a set
In this section we describe our convolution algorithm. Wgs rectangles and right triangles with pairwise disjoint interiors.
begin with an intuitive high-level description of the essentiza|+ogether withB, these form the set of primitive shapes.
technique used by the algorithm. Recall thiadenotes the | ot 1 denote the number of sides &f and letr denote the
number of sides of the kern&l. The first stage of the algorithm nymper of such shapes. Observe that each time a bulletis shot, it
involves decomposing the kernal into a collection ofO(k)  splits some region into at most two subregions. Siticbullets
simpler shapes, callegrimitive shapessuch thatk’ can be gre shot (two per vertex df), and we started with the bounding
represe_:nted asa V\_/eighted sum of the_se shgpes. Each primiiye B it follows thatr < 2k + 1 = O(k). Each bullet shoot
shape is an axis-aligned rectangle or right triangle. can be done i©(1) time, since the result depends only on the
The second stage involves preprocessing the image. We crg¢gé@tion of the bounding box and possibly the result of the bullet

k + 2 sequences of equally spaced parallel lines, where each@gms of the previous vertex. Tipgimitive shapesire denoted
quence is either horizontal, vertical, or parallel to a sid&of - r, . K,

. . . . ?
Theseare calletanonical linesEach sequenceofcanonicallines sphapedy;, K>, ..., K, have pairwise disjoint interiors. Let

decomposes the image rectangle into a collection of thin regiqgm([(i) denote the boundary d;. If a grid pointinB falls on
calledcanonical stripswWe will digitize each strip using midpoint e boundary between two or more of these shapes, we assign
digitizationand preprocessitbyamethodtobe described later. Weniquely to one of them as follows. Consider the veetor
will show that in constant time, itis possible to compute thetot@) ¢2) for an infinitesimale > 0. A point p on bnd(K;) is
weight of a parallelogram defined by a strip and two lines that asigned tak; if and only if p + v is in the interior ofK; .1
either horizontal or vertical. We will show that this structure CaNntuitively, this means that each shape is semi-open with the
be builtin time and spag@(mn) for each side of’. lower-left parts of the boundary belonging i6; (see Fig. 3).
The third stage of the algorithm computes the actual convRpte that this is consistent with our convention that pixels are
lution. It is based on computing valid convolutions for each Qfigsed on their lower-left sides. Let us apply this convention to
the primitive shapes and then summing the results over@)  the convex kernek as well. Because the definition of a valid
shapes to get the final convolution. For any placement of a prigggitization provides the freedom to include a grid point on the
itive shape, we will define a special valid digitization called th%oundary ofK or not, there is no loss of generality in applying
canonical digitizationWe will show thatfor each primitive shape this convention tax.
the weight of a single placement of the shape can be computegje assert next that can be expressed as a weighted sum of

in O(mn) time. Then we will show that once the weight of ongnhese shapes arfél. The bounding bo3 is assigned a weight
placement is known, it is possible to update the weighi®{a)

time whenever the macemem is translated by a unit distance, ef:l’he reason for squaring the second component of the vector is so that the
herhori I icallv. Thisis d ith the aid ofthe di .vector’s angle with respect to theaxis decreases with Because the polygon
therhorizontally orvertically. Thisis done withthe aid of the digiis pounded by straight line edges, for all sufficiently smafk 0, the point

tizations ofthe canonical strips. By translating the primitive shaper ». cannot lie on the boundary df .

R={(z,»)]05<x<n+0.5,05<y <m+0.5}

Ill. THE ALGORITHM
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Fig. 3. Examples of semi-open shapes. !. !

of +1, and all the other primitive shapés,, K-, ..., K, are f S Y
assigned aweight 6f 1. Let Ky = B. Letw; denote the weight 8 S A NN Y 5 Y
of K;. Let K;(p) be 1ifp € K; and 0 otherwise. For afl € R?, -
define the weight of to be W (p) = >;_, w; K;(p). A
. 2
Lemma 1: Forallp € R7, Fig. 4. Canonical lines.

1, ifpeK )
Wi(p) = {0, otherwise. (1) vl S, m .5 o L
Proof: Points outsideB are clearly not inK” and have
weight 0. Points in the interior & have weight 1 since they lie
inside B but outside all the other primitive shapes. Because tl ;
primitive shapes other thaR are pairwise disjoint and cover f 05, 03)
B\K, each point ofB\ K lies in B and exactly one shap; &5 - jm +0.55 Ty
and hence has weigt— 1 = 0. O

B. Canonical Lines and Canonical Digitizations Fig. 5. (a) Range of canonical lines and (b) the intersection of a trialigle

For eachr € 72, and each primitive shape &f;, we define a Wwith .
special digitization of the placemett K;, called thecanonical
digitization and denoted by)¢(t + K). This will be done in K
such a way that the weighted sum of these digitizations defines e
a valid digitization of the placementt- K.

Consider any primitive shapg;. If K, is a rectangle then
define D°(t + K;) to be the midpoint digitization, that is, the
set of grid points lying in the intersectionf K; and the image
rectangler. If K is aright triangle, then the main issue is how
to digitize its slanted side (the one that is not axis parallel). To
do this we introduce the notion oftanonical line We consider
two cases depending on the slopefofs slanted side. If the a
absolute value of the slope of the slanted side of the triangle
is less than 1, we call(; a low-slope triangle otherwise, we
call it a high-slope trlangIeBelow we cpn5|der the h'_gh'SIOpefollows that a line of slope intersectsk only if its z-intercept
case. The low-slope case is handled in a symmetrical manngls \vithin the interval
by swapping the roles of the- andy-axes. .

Let s denote the slope of the slanted sidefof. Consider X=lo5_"™ T 0")7 n—+0.5 <1 _ 1)}
the sequence of lines (sorted, from left to right) that intersect $ $
the image rectangl&, have slopes, and haver-intercept an [see Fig. 5(a)]. Since > 1 it follows that the length of this

Fig. 6. Canonical digitization.

integer multiple of 0.5 (see Fig. 4). Observe that the horizontalterval is at most + m. O
distance between two consecutive canonical lines is 0.5. (In thelhe canonical digitizationof a right trianglet + K; is de-
low-slope casey-intercepts are used instead, and the verticfihed as follows. Consider the liessupporting the slanted side
spacing is 0.5.) These lines subdivillénto a collection of thin of K. If £ does not intersect the image rectanglehen the in-
regions, calleccanonical strips (The reason for the choice oftersection ot + £, is either empty or a rectangle [see Fig. 5(b)].
0.5 as the separation distance will be discussed later.) In the latter case, the canonical digitization is defined as in the
Lemma 2: For any primitive shapé&; and anm x n image rectangle case to be the set of grid points lying within this rec-
rectangle R, the number of canonical lines and number dfangle. Otherwise, let us assume for the sake of concreteness
canonical strips generated By, is O(m + n). that the triangle lies to the right of the slanted line. (The other
Proof: Assume for concreteness thas positive ands >  case is symmetrical.) Select the nearest canonicalffirtbat
1. The proofs for the other cases follow from simple symmetriies on or to the right of [see Fig. 6(a)]. This can be accom-
Recall the definition of the image rectangiefrom Section Il.  plished in constant time by computing théntercept of¢, and
By considering the lines passing through the upper left corndien rounding to the next larger integer multiple of 0.5. In gen-
(0.5, m+0.5) and the lower right corndr 4 0.5, 0.5) of R, it  eral,/ is rounded toward the interior of the triangle it supports.



1830 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 12, DECEMBER 2001

The canonical digitization of+ K;; is defined to be the set of canonical line
grid points that lie within the intersection of the bounding rec-
tangle oft + K; and the image rectangle, and are either on or
to the right of¢*. [These are shown as black points in Fig. 6(a).]
Notice that by rounding to the canonical line lying toward the
interior of the triangle, the canonical digitization consists of a
subset of the grid points lying ih+ K. Thus it is a subset of
the midpoint digitization of + K. [For example, in Fig. 6(a)
two grid points in the midpoint digitization have been excluded
from the canonical digitization.]

Given the canonical digitization for a single primitive shape,
we define the canonical digitization féf as the weighted sum
of the canonical digitizations for primitive shapes K;. More
formally, recalling the weights; introduced above, we definedoes not lie in the canonical digitization of any other primitive
the canonical digitization of + K to be the weighted sum of shape. Buy does lie withinB3, and hence it is assigned a weight
the digitizations of + K, that is of1—1=0.

To establish this assertion, suppose thdtes within the

Fig. 7. Proof of Lemma 3.

. T . bounding boxt + B, but outsidet + K, andg is not in the
Dt +K) = sz Dt + K;). canonical digitization of any primitive shape. We derive a
=0 contradiction. Clearly is in a unique primitive shape+ K;,

but not in the canonical digitization af+ K. For the sake

In Qtufrdwords, fa p'tXEI Ilets n thih(?anquf"‘l f|g|t|(zjadt|on if tr; f concreteness, let us consider the case of a high-slope side
weighted sum of Sets containing this pIXel1S L, and does NOt G qa e k¢, Jies to the right of its slanted side (see Fig. 7).

initif this ngghted sum Is 0. [An e.xamp_le.i_s shpwn inFig. 6(b)Sinceg is not in the canonical digitization, it lies to the left of
The grid points belonging to the final digitization are shown e associated canonical line. However, by construction, the
black points in this figure.] Since the primitive shapes lie outsi onical line is to the right of the slante’d sidetof K; by a'
K, observe that the s_ides are rounded_ away f_r(_)m Fhe interior rizontal displacement of at most 0.5. Therefore the slanted
K, and hence the pqnts_ of the gano_nlca_l Q|g|t|z_at|orKoare side oft 4+ K; lies to the left ofg by a horizontal displacement
a superset of the pomts_ln the '_“'dPO_'T“ d!g|t|zat|on[()f Next of less than 0.5. Since the pixelg) is of width 1 andy is its
WeLShOW thge}t':the resultis a Val'dl d|g;|(zat|ogb’f. midpoint, it follows that the slanted side 6f+ K; intersects

5 emma 3. For any convex EO ygok, and any vectot & 7(g). However, this contradicts hypothesis 2). The low-slope
2+, the canonical digitizatiod)“(t + K) is a valid digitization . 4 is proved symmetrically, using vertical distances.
of ¢ + K. _ —_ e , Finally, to show 3), consider a pixel(g) that intersects the

Proof: By the definition of a valid digitization, it suffices boundary of ¢+ K)N R. If ¢ lies outside the bounding bax+
. . ) 5 .
to( s)hic;mt/htge if;)gllo(vsvtlanrgi_fgr sr?fj?]i?rsldug?gceenzte.r;le;f” that B)NR,itis assigned aweight of 0. Otherwigewill be assigned
I P . _ P o q T an initial weight of 1 because it lies inside the bounding box. We
1) If 7(g) lies entirely within(t + K) N R theng is assigned claim thatg can be in the canonical digitization of at most one

a weight of 1. other primitive shape. This is becaugean lie in at most one
2) If 7(g) is entirely outside oft+ K )N R theng is assigned primitive shape, and hence it lies in the midpoint digitization of
a weight of 0. at most one primitive shape. Because the canonical digitization
3) Otherwisey is assigned a weight of either O or 1. of a shape is a subset of the midpoint digitizatigriies in at

Recall that a grid poing is in the midpoint digitization of a most one canonical digitization. #fis in some such canonical
shape if and only ify lies in that shape. To establish 1), observdigitization, its final weight is 0, and otherwise its weight is 1.
that if 7(g) lies entirely within(¢ + K) N R then its midpoint This establishes 3), and completes the proof. O
g does as well. Every grid point it + K) N R is given an  The reason for rounding lines toward the interior of the prim-
initial weight of 1 because it lies within the bounding rectanglggive shape triangles and the choice of 0.5 as the separation dis-
t+ B. Furthermore, because each of the canonical digitizatiogce between canonical lines is apparent from the proof. The
is a subset of the midpoint digitization, no canonical digitizatioproof of part 2) relied on the fact that the horizontal distance is
for any primitive shape can contain this point. Thus, its totalalf the width of a pixel. The proof works as long as the dis-
weight is 1. tance between canonical lines is at most 0.5. By reducing the

To establish 2), consider a pixely) that is disjoint from spacing between the canonical lines it is possible to produce
(t+ K)NR.If g lies entirely outside the bounding béx- B, a digitization that is arbitrarily close to the midpoint digitiza-
or outside the image bounding b@ it is not allocated to any tion. However this would result in proportionally more canon-
canonical digitization, and so it is given a weight of 0. Otheiieal strips, and hence the algorithm’s running time and storage
wise, g lies within (¢ + B) N R and outsidét + K) N R, and costs would increase proportionally. Note that the proof of 3)
hence lies in a unique primitive shape K;. We assertthatis relied on the fact that canonical digitizations are subsets of the
in the canonical digitization of some shape K;. Observe that associated midpoint digitizations. If this were not the case, a
if this is true, then because the primitive shapes are disjgintpixel whose center is ik but which is intersected by two sides
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Fig. 8. (a) The two translatest+ K ; (dotted) and’ + K ; (solid) and the rectangles— and A+ which form the symmetric difference, (b) the initial image
pixel weights, and (c) the weights after computing prefix sums within each column.

of K might conceivably be assigned to the canonical digitizéhe prefix sums of the topmost grid point in the rectangle and the
tions of two difference primitive shapes. The resulting weiglgrid point just below the bottommost grid point, thatds; 1 =
of the associated grid point would he- 1 — 1 = —1, and this 7. Doing the same foAT we find that its weight i$ — 2 = 4,

does not correspond to any valid digitizationzof and hence the total change of weight between placememts
t'is4—7 = —3. The weight of + K is 12 and hence after only
C. Updating Canonical Digitizations three arithmetic operations (after preprocessing) we determine

The main algorithmic tasks needed to compute the digitiz12 the weight o’ + f; is 12 — 3 = 9. .
tion are 1) computing the weight of the canonical digitization "€ Préfix sums for each column can be computed by asimple
of a single placement of a primitive shape, and 2) updating tf&an mO(m) time, 'mP'y'”g that aI.I the prefix sums can b'e.c_om-
weight of the canonical digitization when the shape is shiftetﬂJted inO(mn) total time. The weight of the canonical digitiza-

by one unit distance, either horizontally or vertically. The fird{on Of any rectangle of unit width can be computed in constant

task can be accomplished by applying any standard algoritfijfi€ Py rounding its;-coordinates to determine the grid column
for digitizing convex polygons [7]. The second task will be adt-hat it spans, and then r.oundlng gscoordmates to. determine
dressed in the remainder of this section. the elements of the prefix sum whose difference is to be taken.

1) Rectangular ShapesiVe first consider the case of a rect? vertical unit-length translation is handled similarly, but it re-
angular primitive shap&;, since itis the simplest. For Concrete_sults in two rectangles of unit vertical height. The preprocessing

ness we consider the case of a translation to the right by one uffif,thiS case consists of computing prefix sums for each of the

(The other unit shifts are handled similarly.) ltetnd¢’ be two rows. ) ,
placement vectors where thét= ¢ + (1, 0). We assume that 2) Triangular Shapes: Horizontal TranslatiorNext we
the weight of the canonical digitization ;3# K. is known. and consider how to update the weight of the canonical digitization
we want to compute the weight of the canonical digitization ¢ th€ Placement of a right-triangle primitive shajse. We will
# + K;. First, observe that the symmetric difference betwedySUMe that the slanted side/of has a slope that is positive
t+ K; andt' + K; is the union of two congruent rectanglas and at least 1. The cases for negative and/or low slopes are
andAZJf each ofzunit width, whera— lies to the left oft’ + K handled similarly. Let us first consider the case of a horizontal
andA+ lies to the right oft;rK [see Fig. 8(a)]. The weigh{of translation; we will consider vertical translations later. As
# + K; is equal to the weighijr K; minus the weight ofs - before, lett + K; denote the current placement &%, whose
and plus the weight o+ Since we are dealing with canonicalV€ignt we know, and let’ + f; be the new placement, whose
digitizations, this means weight we wish to compute. Let = ¢ 4 (1, 0) [see Fig. 9(a)].
’ In the rectangular case, we reduced the problem to that of
w(D(H + K;) computing the difference of weights of two rectangles of unit
' width. In this case we will see that the problem reduces to com-
— c . _ c — c +
= w(D*(t + Ky)) = w(D(A7)) + w(D(AT)). puting the difference of weights of a rectangle and a parallelo-
gram. Consider two shapes™ andA ™ [see Fig. 9(b)]AT isa

Observe that f the W.'dt.h QK is less than 1 then andA_ rectangle of unit width that lies to the rightof K;, andA~ isa
overlap. However, this is not a problem because the weights In

the region of overlap will cancel when we add one and Subtr&%rallelogram of ““'tW'th lying to the left @HKZ" with hor-
the other. 1Zontal top and bottom sides and slanted sides that are parallel

. . : . tothe slanted side df;. These two shapes overlap one another,
The incremental change in weight can be computed in qugldt observe that the symmetric difference af K; and#’ + K,
stant time once we know the weights of the two unit-width rect- y i ¢

anglesA™ andA™. To do this we preprocess the image as foF equal o the symmetric difference Af* andA™. Thus, we
i : ve
lows. For each column and each grid point we store the to a?
weight of the image points in that same column that have equalD°(¥' + K))
or smallery-valugs. This is called prefix sum . — w(D(t + K3)) — w(D(A)) + w(D(AT)).

For example, in Fig. 8(b) we show the weights of the pixels of
the image. Observe that the total weightof is2+1+4 = 7. The horizontal width ofAT is one unit, and hence it spans
In Fig. 8(c) we show the result after computing the prefix sunexactly one column of grid points. Its weight can be computed
for each column. The weight ok~ is the difference betweenin constant time using the same method described earlier for
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Fig. 10. Updating weights for the vertical translation of a triangle.

rectangles. [For example, the weight in Fig. 9(c)isT—2= ¢ = t — (0, 1) [see Fig. 10(a)]. As in the horizontal transla-
5.] tion case, the change in weight can be expressed as the differ-

Next, we consider the canonical digitizationaf . Observe ence of the weights of a parallelogram and a rectangle. Con-
that the horizontal distance between the slanted sides in #iéer two shapeAt andA~. At is a rectangle of unit vertical
canonical digitization of this parallelogram is exactly one unitvidth lying beneatht + K;. A~ is a parallelogram of unit ver-
This follows from the facts that the original slanted lines of thigcal width lying above’ + K;, with vertical left and right sides
triangle before and after translation are separated by a distanod slanted sides that are parallel to the slanted sid€ ¢éee
of one unit, and both slanted lines are rounded in the same direa@. 10(b)]. As before, these two shapes overlap one another, but
tion to anz-intercept that is a multiple of 0.5. Thus~ spans the symmetric difference af+ K; and# + K, is equal to the
exactly two canonical strips. It suffices to compute the sum efymmetric difference oA+ andA~.
the weights of the two parallelograms resulting from the inter- The vertical width ofA™ is one unit, and hence it spans ex-
section of A~ and these two canonical strips. actly one row of grid points. Its weight can be computed in con-

As before, we assume that the image has been preprocestedt time, using the same method described earlier for rectan-
by computing the prefix sums within each canonical strip. [Thigles, but this time using prefex sums along the rows. [For ex-
is shown in Fig. 9(d).] Once these prefix sums have been coemple, the weight\t in Fig. 10(c) is3 — 0 = 3.]
puted, we compute the difference between the prefix sum of thelet s denote the slope of the slanted sidefof In the hor-
topmost grid point in each of the two parallelograms and thieontal translation case, the slanted parallelogram was of unit
topmost grid points in the strip lying immediately below eactvidth and hence spanned exactly two canonical strips. In this
parallelogram. (Details will be discussed in Section I11I-C4.) I€ase the slanted parallelogram is of unit vertical width and hence
there is no pixel below the parallelogram, then the value 0 @ horizontal widthl/s. By hypothesis this is a high slope prim-
used. itive shape, and hence> 1. Because each canonical strip is of

In Fig. 9(d), the weight of the left parallelogramis- 0 = 5 horizontal width 0.5, it follows that (depending on the vagaries
and the weight of the right parallelogramidis- 1 = 3 and hence of rounding) the slanted parallelograT spans either 0, 1, or 2
the weight ofA~ is 5 + 3 = 8. Finally the difference between canonical strips. (By the way, this is why we need to distinguish
At andA~ is 5 — 8 = —3. The weight oft + K; is 8, and between the high-slope and low-slope caseswere less than
hence using only six arithmetic operations we determine thhtthen the parallelogram might span an arbitrarily large number
the weight oft’ + K, is8 — 3 = 5. of canonical strips.)

3) Triangular Shapes: Vertical TranslationThe lastcaseto  The processing is exactly the same as in the horizontal trans-
be considered is the incremental change in the weight of a rigation case, except that we determine how many canonical strips
triangle primitive shape, again with a high slope, but in the caé® 1, or 2) are spanned k¥~ by rounding. We then compute
of a vertical translation. Assume that the triangle is translatéueir total weight using the prefix sums for these strips and re-
vertically downward by one unit. Let+ K; denote the cur- turn the total. For example, in Fig. 10(d\~ spans only one
rent placement of{;, whose weight we know, and lét+ K; canonical strip, and its total weight is computed by taking the
be the new placement, whose weight we wish to compute. Laifference between the topmost grid point and the grid just be-
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strips are stored for each row, we can access the appropriate
prefix sum values in constant time. The case of vertical trans-
8 lation is somewhat more involved. This is because the left and
right sides of the parallelogram are vertical. Consider the case
| ST | of a parallelogram for a high-slope primitive shape [as shown in
Fig. 11(c)]. To access the appropriate element of the prefix sum,
we compute the-coordinate of the intersection of the vertical
4 side with the top edge of the canonical strip. We then round this
down to the next smaller integer, and access the prefix sum value
associated with this row.
Combining the discussion of this and previous sections, we
Fig. 11. Technical issues in the algorithm. have the following result.
Lemma 5: After preprocessing has been completed, if the

neath the parallelogram, for a weightdf- 3 = 4. Combining Weight of the canonical digitization of a placement of a primitive

this with the weight ofA+ it follows that the total weight change Shap€ + K; is known, then the weight of the canonical digitiza-

is3 — 4 = —1. Since the weight of + K; is 8, the weight of tion of any unit-length translation of the primitive shape, either

t+K,is8—1 = 7. The number of arithmetic operations needefiorizontally or vertically, can be computed in constant time.

to compute the updated Weight is no greater than the horizontaAS mentioned earlier the constant factors in the time are quite

translation case. small. For each of thé sides of the kernel the preprocessing
4) Technical IssuesThere are a couple of technical issue#Ivolves digitizing a line of this slope, and visiting each pixel

that were not fully discussed in the previous sections. The figt the image once in order to compute the prefix sums. The

involves how prefix sums are computed. We consider the caségimber of primitive shapes is at mast + 1, and each update

h|gh S|0pes_ Low S|0pes follow from a symmetrica| argumerﬁ:[ep essentially involves rounding coordinates to determine the

and horizontal and vertical strips have already been discuss@@propriate prefix sums to access, and then applying up to six

Each canonical strip is of width 0.5. We begin by pairing corfithmetic operations to these sums.

secutive strips together to form a collection of disjailauble

stripseach of unit width. We can compute the grid points of thB. Canonical Convolution Algorithm

image rectgngld% th_a_t I|e_ within each wide SF”p b_y _QPP'Y'”Q We now give the complete description of the algorithm for

an appropriate modification of any standard line digitization a%

ithm. f le. B ham'’s midooint alaorthm [21. [7 omputing the approximate convolution. As mentioned before,
gorithm, for example, Bresenham’s midpoint algorithm [2], [ he algorithm operates by computing the weights of the canon-

[see Fig. 11(a)]. ical digitizations for each of th@(k) primitive shapes, and then

As we walk along this digitized line from bottom to top, W(.':‘computing the weighted sum over all these shapes. Lemma 3

can determine which grid points lie in the left canonical stng

b |

; X . ates that the resulting sum is a valid digitization, and hence
and Wh'(_:h to th_e right and update a preﬂx sum counfcer fqr € resulting convolution, called tleanonical convolutionis a
such strip. In F|g_. 11(b), we show this f(.)r the I_eft strip. F'na"X/ lid convolution. Here is the entire algorithm, which is given
we store the prefix sums for each canonical strip as avector v input image[L, ..., m; 1, ..., n] and the kernel polygon
one entry for each row of the image, even if this row does Nt | it 1. cides. T

contribute a grid point to the canonical strip. This is shown on
the right of F?g. lg(b). P 1) Using the method of Section IlI-A, subdividé into r» =

O(k) primitive shapes denotel,, K>, ..., K,.
2) Compute the prefix sums for the rows and columns of the
image inO(mn) time. Initialize the convolution result
imageC[1, ..., m;1, ..., n]to 0.
3) For: from 1 tor, perform the following steps:

The time to apply this to each double strip is proportional to
the number of grid points in the strip. Because the double strips
are of unit width, each grid point aR occurs in one double
strip, and hence the total time to compute the prefix sums is
proportional to the image size, which@¥mn). The total space

used is als@(mn) by the same argument. Note that the only a) if K; is a right triangle shape, compute the prefix
essential difference for the low-slope case is that prefix sums are sums for the canonical strips for the slanted edge
computed and stored by columns, rather than by rows. Hence, of K;;
we have the following. b) by brute force, compute the weight of the canonical
Lemma 4: The preprocessing for all canonical strips for a digitization of the placement af;; in the lower left
given slope can be done @(nm) time andO(nm) space. corner,K; + (1, 1) [see Fig. 12(a)];
The second technical issue is how to determine which prefix c) fory from 2 tom, do the following:
sum values are used in computing the weights of shapeand i) compute the weight of the canonical digiti-
AT, For the rectangular cases, this simply involves rounding zation of K; 4+ (1, y) by updating the weight
the coordinates of the appropriate side to the next smaller in- of K; + (1, y — 1) through a vertical trans-
teger and accessing the associated prefix value. In the case of lation of one unit [see Fig. 12(b)];
horizontal translation, thg-coordinates of the top and bottom i) for z running from 2 ton, compute the
sides of the parallelogram are simply rounded to the appropriate weight of the canonical digitization of

integer values. Because prefix sums for high-slope canonical K; + (z,y) by updating the weight of
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digitization, does not generalize immediately to collections of
convex polygons.

Another question is: If valid convolutions are used to approx-
imate morphological operations (such as dilation), what can be
said about the properties of the resulting shapes, as compared
with their exact counterparts, and what is the magnitude of the
resulting discrepancy in practice. As mentioned at the end of

Section llI-B, by placing canonical lines closer together it is

Fig. 12. Complete algorithm structure.

possible in increase the accuracy of the digitization to any de-

sired level, but since this would result in more canonical strips,
a proportional increase in computation time and space would be

K, + (z — 1, y) through a horizontal trans- paid.

lation of one unit [see Fig. 12(c)];
d) as each new digitizatioR; 4 (x, y) weight is com-
puted in steps b) and c), add the result to the appro-
priate index in the convolution matrix ify.
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algorithm for digitizing convex polygons [7], [10]. The running
time of such an algorithm is proportional to the number of pixels
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performedO(mn) times, the total time for each iteration of the |5
loop in step 3) ixD(mn). Since this loop is repeated for each
of the O(k) primitive shapes, step 3) takes total tid¢kmn). [l
Hence, the total running time @(kmn). [4
As mentioned in Lemma 4, the space requirements are
O(mn) per slope. Since we can discard the prefix sums .
computed in step 3a) after their use in step 3c), we need tc; ]
keep only three copies of the prefix sums at any time (one for6]
the slanted slope, one for the rows, and one for the columns)m
Thus the total space requirements &@mn) = O(mn). This
establishes our main result, Theorem 1.
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(8l
IV. CONCLUSIONS [9]

We have presented an efficient algorithm for computing[10
approximate (valid) convolutions for binary kernels that are
modeled as convek-sided polygons. The algorithm runs in [11]
O(kmn) time on anm x n image, irrespective of the area or [,
perimeter of the kernel. Our approach is based on a special type
of digitization of the kernel, called a canonical digitization, [13]
which varies from one placement to the next. We have shown
that canonical digitizations can be updated efficiently throughi4)
the use of prefix sums. Although we have showed that the
constants hidden by the O-notation are reasonably small, this
method would not be competitive with existing convolution [15]
algorithms for small or rectangular kernels. However, applica-
tions involving large convex kernels should benefit from this[ls]
approach.

Some interesting open problems are suggested by this wo;}a
One question is whether these techniques can be generalize Jt<7)]
convolutions involving kernels that are multi-valued (grayscale)18]
or to nonconvex simple polygons. In theory, such a kerne]
could be subdivided into single-valued, convex parts. However[,lg]
Lemma 3, which establishes the validity of the canonical
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