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Abstract- We present a methodology for the quantitative 
performance evaluation of detection algorithms in computer 
vision. A common method is to generate a variety of input images 
by varying the image parameters and evaluate the performance of 
the algorithm, as algorithm parameters vary. Operating curves 
that relate the probability of misdetection and false alarm are 
generated for each parameter setting. Such an analysis does not 
integrate the performance of the numerous operating curves. In 
this paper, we outline a methodology for summarizing many oper- 
ating curves into a few performance curves. This methodology is 
adapted from the human psychophysics literature and is general 
to any detection algorithm. The central concept is to measure 
the effect of variables in terms of the equivalent effect of a 
critical signal variable, which in turn facilitates the determination 
of the breakdown point of the algorithm. We demonstrate the 
methodology by comparing the performance of two-line detection 
algorithms. 

I. INTRODUCTION 

UANTITATIVE performance evaluation of computer 
vision algorithms is important in order to compare the 
performance of dissimilar algorithms on a common 

quantifiable basis. The usual method is to vary parameters 
of the input images or parameters of the algorithms and then 
construct operating curves that relate the probability of mis- 
detection and false alarm for each parameter setting. Such an 
analysis does not integrate the performance of the numerous 
operating curves. In this paper we outline a methodology for 
summarizing many operating curves into a few performance 
curves. This methodology is adapted from the human psy- 
chophysics literature and is general to any detection algorithm. 

How exactly does one define performance? Issues that need 
to be addressed are: i) What image population is relevant? ii) 
Is the performance evaluated independent of the algorithm? 
iii) How are differences in performance measured? An area 
with previous work on quantitative performance evaluation is 
in edge detection and thresholding [I]-[7]. Most of the papers 
present an analysis that is specific to edge detection. Further- 
more, the performance is finally a number, e.g., percentage 
of edge points detected, etc. There is little further analysis of 
the sensitivity of performance to relevant factors, such as the 
context of the edge. 
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In this paper, we present a methodology for designing 
experiments to characterize detection algorithms. We adopt 
an established methodology that has been used and tested in 
psychophysics. The central concept is to measure the effect on 
performance of variables in terms of the equivalent effect of 
a critical signal variable. For example, psychophysicists study 
the performance of humans in the task of edge and grating 
detection by measuring the contrast necessary for detection 
under a variety of conditions [8]-[lo]. The effect of various 
conditions is measured by the equivalent effect of contrast 
as quantified by the contrast threshold. We demonstrate the 
use of this methodology for detection algorithm performance 
evaluation by comparing the performance of two line detection 
algorithms. The task was to detect the presence or absence of 
a vertical edge in the middle of an image containing a grating 
mask and additive Gaussian noise. We compare two line 
detection algorithms: i) The facet edge detector [l 11 followed 
by the Bums line finder [12], and ii) the facet edge detector 
followed by the Hough transform. 

The methodology is defined in a general enough way that it 
can be readily applied to other computer vision algorithms that 
can be specified as a detection task. Typical problems where 
this methodology can be applied are-the detection of cracks, 
the detection of curves, the detection of objects, pose error 
estimation, machine part inspection, etc. Some of the results 
presented here were presented earlier in [13], [14] and this 
methodology has been partially applied to object recognition 
[15] and machine part inspection [16]. 

In Section 11, we describe the general performance eval- 
uation methodology. The example experiment we perform to 
demonstrate the methodology is described in Section 111. Here, 
we discuss the detection tasks, two algorithms for detecting our 
targets, and describe the population of images the algorithms 
and the experimental protocol. In Section IV, we summarize 
the results. The benefits of our methodology and its application 
to other detection problems is discussed in Section V. 

11. DATA ANALYSIS METHODOLOGY 

Consider a typical detection task wherein a system is 
required to report the presence or absence of a target in an 
input image. Typically, the system first computes a number 
that gives a measure of the evidence of the presence of the 
target, and then reports that a target is present if the evidence 
strength is greater than a particular value. In any detection task 
there are some variables that affect the signal to noise ratio 
SIN,  in the image, which, in turn, affect the performance 
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Fig. 1. Performance curves for the typical experiment described in the 
methodology. (a) Step 1-frequency counts for target and nontarger case; (b) 
Step 2-operating characteristics relating P(M) and P(F); (c) Step 3--equal 
cost probability of error as a function of signal to noise ratio; and (d) Step 
4-threshold as a function of the variable of interest. 

of the detection system. One example of such a variable is 
the edge contrast. Increasing the edge contrast of the signal 
results in an increased SIN ratio and an improvement in the 
system’s ability to detect edge targets. 

The methodology is applied in four steps. The first two are 
standard decision analysis [2], the last two are inspired by 
psychophysical methods [lo]. 

Step 1: First, two noise-free images are created: one with 
the target and one without. Then, a large number of images are 
created from these base images by adding different realizations 
of noise. Each image is then provided as input to the system 
whose performance is to be evaluated. The output of the 
system is a number that is a measure of the evidence of the 
presence of a target. This number is referred to as the evidence 
strength. Each evidence strength has an associated frequency 
(i.e., the number of times it appears at the output of the system 
in the course of the experiment). The frequency count is plotted 
versus the evidence strength to obtain the graph shown in 
Fig. l(a). Two frequency distributions are obtained, one for 
the case of target present and one for the case of no target 
present. In this figure, the point A represents the fact that the 
system outputs E1 as the evidence strength for twelve input 
images that do not contain the targets. Similarly, the point B 
represents the fact that the system outputs E2 as the evidence 
strength for ten input images that contain the targets. 

Step 2: To decide whether or not the system has indicated 
the absence or presence of a target, an evidence criterion C has 
to be applied to the evidence strengths output by the system. 
If the evidence strength corresponding to an image is greater 
than the evidence criterion, then the target is declared to be 

present in the image. To study the performance of the system, 
the evidence criterion is varied through a set of values. See 
Fig. l(a). If the system claims that the input image does not 
contain the target when in fact it does, the decision is defined 
as a misdetection. Similarly, if the system claims that the input 
image contains the target when in fact it does not, the decision 
is defined as a false alarm. The probability of misdetection, 
P(misdetection) is defined as P ( n o  targetltarget) = num- 
ber of misdetections/total number of input images with target. 
The probability of false alarm, P ( f a l s e  alarm),  is defined as 
P(target(no target) = number of false alarmdtotal number 
of input images with no target. For each value of the evidence 
criterion there are corresponding values of P(misdetection) 
and P ( f a l s e  alarm).  The plot of P(misdetection) versus 
P ( f a l s e  alarm) as the evidence criterion is varied is called 
the operating characteristic, see Fig. 1 (b). 

For the equal bias case, choose the operating criterion, 
CO as the evidence strength for which P(misdetection) = 
P ( f a l s e  alarm).  The equal bias probability of error, 
P ( E )  is then defined as P ( E )  = (P(misdefect ion)  + 
P(faEse aZarm)/2 for equal probability of target and 
no-target. 

Step 3: For different values of the signal to noise ratio, 
repeat steps 1 and 2. Each value of SIN results in an 
operating characteristic from which the equal cost probability 
of error, P ( E ) ,  can be determined. P ( E )  is plotted versus 
SIN in Fig. 1 (c). Choose CT, the value of S/N for which 
P ( E )  = 0.25, as the contrast threshold. The value of P ( E )  
corresponding to the CT is chosen half way between pure 
chance ( P ( E )  = 0.5) and perfect ( P ( E )  = 0.0). If the 
particular application so demands, the value of P ( E )  that 
defines the contrast threshold CT can be chosen differently. 

Step 4: For different values of the variable of interest V ,  
repeat Steps 1, 2, and 3. A typical plot of contrast threshold 
CT versus the variable of interest V is shown in Fig. l(d). This 
curve now characterizes the effect of the variable of interest 
in terms of the effect of contrast. The effect of any variable 
can be measured by its effect on the contrast threshold. 

In summary, Steps 1 and 2 result in a measure of per- 
formance using standard decision analysis. Step 3 provides 
a measure in terms of a signal variable at a fixed SIN ratio. 
Step 4 measures the effect of any other variable by the common 
currency of the signal variable. 

111. THE EXPERIMENT 

The Detection Task 

We illustrate the general methodology with an analysis of a 
particular issue in edge and line detection. The question raised 
is-How selective is an edge detection algorithm to clutter 
(irrelevant) edges? For example, can the algorithm detect an 
edge in the context of a texture containing oriented edges? 
A similar problem has been analyzed for human detection 
performance in [SI (a typical real-world example of such 
a detection task in the image processing domain is in the 
inspection of composite materials and metals slabs for cracks). 
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In the experiment, the input is either a target image or a 
nontarget image. The target image consists of a vertical edge 
at a known column position, irrelevant square wave grating 
at various orientations, and Gaussian noise. The nontarget 
image consists of only the grating and the Gaussian noise-no 
vertical edge. The task is to detect the presence or absence of 
the edge of interest without being “confused’ by the grating. 
The signal to noise ratio is manipulated by varying the noise 
standard deviation. The variable of interest is the orientation of 
the grating. We measure the extent of an algorithm’s sensitivity 
to the orientation of the irrelevant grating. 

The Algorithms 

In this section, we describe the two algorithms used to detect 
the presence or absence of a vertical edge at the center of the 
image. 

Algorithm I :  This algorithm has two stages: an edge de- 
tection stage followed by a line detection stage. The edge 
detection stage labels individual pixels as edge or nonedge. 
The line detection stage identifies groups of edge pixels that 
might represent a line. For edge detection we use the second 
directional derivative facet edge detector [ 111. For the second 
stage, the line detection is done by the Burns line finder [12]. 

The Burns line finder takes the output of the edge detector 
and labels all the connected lines it finds. As a measure of the 
confidence of the algorithm in the presence (or absence) of a 
vertical line at the location of interest (the column of pixels 
at or “near” the center of the image), we count the number 
of pixels in the middle three columns that were classified by 
the Bums line finder as line pixels. This count is referred to 
as the evidence strength. 

Algorithm 2: Like Algorithm 1, this algorithm also has two 
stages: An edge detection stage followed by a line detection 
stage. For edge detection, as in Algorithm 1, we use the second 
directional derivative facet edge detector. The line detection 
is performed using the Hough transform technique. 

The line detection stage takes the output of the edge detector 
and maps the edge pixels to the distance-angle Hough space 
[ 111. An edge with no noise or clutter grating is first passed 
through the edge detector. The perfect edge image obtained 
is then mapped onto the Hough space. Since this is a perfect 
image, all the edge pixels map on to one bin in the Hough 
space. As the perfect step is progressively distorted the grating 
and noise, the number of pixels that fall into the the same bin 
decreases. Since, we know in advance the exact location of 
the edge, only the pixels in the vicinity of the edge need to 
vote for the edge. Hence, the Hough space is computed for 
only a small region around the location of the edge. The bin 
count is used as the evidence strength for the experiment. 

Experimental Protocol 
The images used were 5 13 x 5 13 pixels. They were defined 

as one of two types: 1) A vertical step edge superimposed 
with a masking grating and noise, 2)  just the masking grating 
with noise. The grating is characterized by the amplitude, the 
frequency, the orientation relative to the vertical direction, 
the fraction of the period when it is higMow (i.e., the duty 

cycle) and its phase angle relative to the center column of 
the image. We use a grating that is a square wave with 
a 50% duty cycle and a half period W of 16 pixels. The 
phase 4 of the grating is the offset of the rising edge of 
the grating from the rising edge of the vertical edge of 
interest. When the offset is zero, the phase is 0 degrees and 
the grating has a constructive interference. When the offset 
is equal to W ,  the phase is 180 degrees, and the grating 
has a destructive interference on the vertical edge. For the 
experiment the phase is fixed at 180 degrees, i.e., the offset 
was W .  The orientation 6’ of the grating with respect to 
the edge is varied through a set of possible angles. The 
grating is rotated about the center pixel of the image. The 
contrast C, of the edge and the grating C, (which is specified 
in terms of fractions of the mean gray value LO) are also 
varied. Similarly the standard deviation, 07, of the Gaussian 
noise also takes values that are fractions of LO. The mean, 
pv, of the noise is assumed to be zero. The values of the 
parameters of the experiment are as follows: LO = 100; C, = 
10% of L0;W = 16 pixels;o, = 20% of = 
0 ; 4 = 180 degrees (destructive phase) ; C, = 
2% of LO, .  . . ,26% of LO; 6’ = 0,1,3,5,45,90 degrees. 

To create a no-edge image the following procedure is used: 
Create a grating image with high and low values Gh and G1 
given by Gh = LO + Lo;cm and G1 = LO - F, and 
orientation is 6’ degrees, with respect to the vertical edge. The 
phase of the grating is assumed to be 7r at the center pixel 
( T ~ ,  cc). The gray value f ( r ,  e )  is computed as follows. First, 
the following function is evaluated at each pixel ( T ,  c ) .  

y ( ~ ,  e)  = sin [ ( (r  - rc)  cos(7r6’/180) + ( e  - e,) sin(7rO/180) 

+W4/180)~/W)I (1) 

Next, if y(r,c) 2 0.0, f ( ~ ,  e )  = Gh; or else, f ( r , c )  = G1. 
Next, convolve the image with a 2 x 2 mask with all entries 
equal to unity to get the no-noise, no-edge image. Finally, add 
zero mean Gaussian noise with standard deviation ov to each 
pixel value to get the final noisy no-edge image. 

To create an edge image the following procedure was 
followed: Create a grating image with high and low values Gh 
and G1 given by Gh = LO + and G 1 - L 0 - 7 ,  - 
and orientation 0 as before. Next, create a vertical step edge 
image with a step edge one column to the right of the center 
column of the image. The high and low values, sh and Sl, 
for the step are given by the equations: Sh = and 
Sl = - L o ; c e .  Add the rotated grating image to the edge 
image to get a edge image with grating. Convolve the image 
with a 2 x 2 mask with all entries equal to unity to get the 
basic masked edge image. Finally, add zero mean Gaussian 
noise with standard deviation oV to each pixel value to get the 
final noisy no-edge image. 

Two sample images used in the experiment are shown in 
Fig. 2. The image (a) has only the grating at an orientation 
of 45 degrees. The image (b) has the grating at the same 
orientation as the image on the right with an additional vertical 
edge. 
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(b) 

Fig. 2. Sample images for the experiment. The image (a) has only the grating 
at an orientation of 45 degrees. The image @) has the grating at the same 
orientation as the left as well as the vertical edge. 

IV. RESULTS 

In this section, we report the results of our analysis of 
the two line detection algorithms outlined in Section 111, 
using the methodology outlined in Section 11. We first discuss 
the evaluation of Algorithm 1 (Facet + Bums), and finally, 
compare its performance with that of Algorithm 2 (Facet + 
Hough). 

The first step is to measure the frequency distribution of 
the evidence strengths for a vertical edge (the target) given 
images with or without an edge. For Algorithm 1, the evidence 
strength is the count of vertical edge pixels detected by the 
Burns line finder in the middle column of the input image. 
These frequency histograms are shown for the case with L T ~  = 
20, 0 = 45" in Fig. 3. As expected, the edge images result in 
a distribution with higher evidence strength values, and this 
appears to the right of the graph. 

The second step is to measure the operating characteristic 
from these frequency distributions. Fig. 4 shows the prob- 
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Fig. 3.  Step 1-€€istogram for evidence strengths for images with and 
without the vertical edge. In this case the grating angle was 45 degrees, the 
edge contrast was 6% of mean gray value. The mean gray value was kept 
constant in all experiments at 100. It can be seen that the evidence strength 
corresponding to images with vertical edge on the average have higher values 
than those images without the vertical edge. This histogram corresponds to 
100 mals-50 with vertical-edge images and 50 without vertical-edge images. 

ability of false alarms as a function of the probability of 
misdetection for the full range of possible evidence criteria. 
This results in a monotonically decreasing function. Notice 
that as the value of the edge detection criterion is lowered, 
the probability of false alarm decreases but the probability 
of misdetection increases. The operating criterion is chosen 
as the point for which P(misdetection) = P(fa1se alarm) 
and is graphically given by the intersection of the 45 degree 
line and the operating characteristic. The probability of error 
P ( E )  = (P(misdetection) + P(fa1se a l m ) ) / 2 .  For example, 
the probability of error is 0.29, when C, = 6%Lo in Fig. 4. 

The third step is to measure the probability of error as a 
function of the signal to noise ratio. For this experiment, the 
signal to noise ratio was manipulated by varying the vertical 
edge contrast, C,. The results for many orientations, 8, are 
shown in Fig. 5. This curve falls from a maximum expected 
error of 0.5 to no errors as the edge contrast increases. If the 
distributions found with Step 1 are equal variance Gaussian, 
these functions will be cumulative Gaussians. Such a function 
is roughly linear in its middle range and this approximation 
is used to extract the contrast threshold, CT,  at performance 
equal to 0.25 error. Contrast threshold CT is the edge contrast 
required to get a 25% error rate or equivalently 75% detection 
rate. More precise results can be based on [17]. From this 
threshold and a template of these functions, one can estimate 
the probability of error for any contrast. 

The fourth step is to measure the effect of the orientation of 
the irrelevant grating. Fig. 6 shows the contrast threshold for 
several orientations. It can be seen that for grating orientations 
greater than 5" and less than 90", you need a vertical edge 
contrast of 6% of Lo to have a 75% detection rate. The 
performance is remains relatively constant over this range 
of grating orientations. There is a sudden deterioration of 
performance as the grating orientations becomes smaller that 
5". In fact, when the grating orientation is O", i.e., the grating 
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Fig. 4. Step 2-Operating curves for grating angle of 45 degrees and vertical 
edge contrasts of 4%, 6%, and 8% of mean gray value, LO. A data point 
on a curve corresponds to a fixed criterion (threshold that was used in the 
histogram). When this criterion is varied over the range of evidence strength 
values and the associated probabilities of misdetection and false alarm are plot- 
ted. The equal bias probability of error, P ( E ) ,  for each contrast is the point 
of intersection of the 45 degree line (P(misdetection) = P(fa1se alarm)) and 
the operating curve for that contrast. 
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Fig. 5. Step 3-The effect of contrast on the equal bias probability of error. 
For each orientation it can be seen that as the contrast of the vertical edge 
increases, the error rate decreases. The contrast threshold, C T ,  is the contrast 
required for a 25% error rate. We can see that when the grating orientation is 
0 degrees, an edge contrast of 23% is required in order to get a 75% detection 
rate. 

is in destructive phase, an edge contrast of 23% is required in 
order to get a 75% detection rate. 

The same analysis was done for Algorithm 2. The results are 
plotted along with the results of Algorithm 1 in Fig. 7.  We can 
see that both algorithms have similar worst case performance 
(grating orientation of 0"). But, Algorithm 1 has a better 
asymptotic performance. Furthermore, the performance of both 
algorithms start deteriorating at around 5". 

Without doing the analysis outlined above, it would have 
been difficult to hypothesize the worst and asymptotic perfor- 
mance of the two algorithms. In addition, it would have been 
difficult to predict the location of the knee, i.e., break down 
point, of the curve. We are currently developing statistical 
measures for each step in this analysis [l 11. 
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Fig. 6. Step 4-Contrast threshold, the edge contrast required for 75% 
detection rate, as a function of grating orientation for Algorithm 1 (Facet 
+ Bums). It can be seen that the performance does not deteriorate further 
when the grating orientation increases from 5O-9Oo. The performance drops 
rapidly, i.e., the algorithm breaks down, as the grating orientation decreases 
from 5'-0". We can see that when the grating angle is 45", an edge contrast 
of 6% of LO is required for 75% detection rate, whereas for 0 degrees a 23% 
contrast is require for the same performance. 
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Fig. 7. Contrast threshold, the contrast necessary for a 75% detection rate, as 
a function of grating angle for Algorithm 1 (Facet + Bums) and Algorithm 2 
(Facet + Hough). It can be seen that Algorithm 1 has a better performance than 
Algorithm 2. Both have equally bad performance when the grating orientation 
is OD-both need approximately 23% contrast for 75% detection rate. But 
when the orientation of the grating is greater than 5', the breakdown point 
for both the algorithms, Algorithm 1 performs much better-Algorithm 1 
needs about 6% edge contrast whereas Algorithm 2 needs about 13% edge 
contrast. This behavior would not have been obvious from few operating 
curves (output of Step 2). 

V. DISCUSSION 

Advantages of using thresholds: 
This methodology builds on previous efforts to formalize 

detection problems. It follows others in using decision analysis 
to combine the two kinds of errors into a single error proba- 
bility given a decision criterion. The current analysis extends 
this by manipulating a signal-to-noise variable to measure a 
threshold as is common in psychophysics. Thresholds have 
several advantages as performance measures: 
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e Thresholds are defined independent of the algorithm. In 
our case we used a contrast threshold that gave us a 75% 
detection rate. 

0 By defining threshold at a fixed performance rate, one 
can compare the effect of other variables at a known and 
comparable SIN ratio. 

e Thresholds vary over as large a range as the signal-to- 
noise ratio. Thus, thresholds will have a dynamic range 
that is not as restricted as the probability of error measure. 
The probability of error is only defined over the initial 
range of perfect (0 error) to chance (0.5 error). This is a 
problem because very low error probabilities cannot be 
measured in a practical experiment. 

0 Thresholds can be measured without factorial experiments 
by adaptively choosing signal-to-noise rztios appropriate 
for each set of conditions.. For example, if we need the 
threshold for which the P ( E )  is 0.25, there is no need 
to run the experiment with parameters that give SIN for 
which the P ( E )  is far from 0.25. This can substantially 
reduce the size of experiments. Furthermcre, as can be 
seen in our experiments, we did not have to run the 
experiment for many orientations between 5” and 90” 
since the performance does not change much within this 
range. One can characterize the “knee”, i.e., the break 
down point, of the curve in greater detail and than other 
parts where there is not much change in performance. 

* Thresholds provide a way to measure differences in 
performance over large ranges. For example, is one 
algorithm worse than another by a 10% difference in 
the threshold, a 100% difference, or a 1000% difference? 
Thresholds give a way of distinguishing between large 
and small effects. 

The use of thresholds is not new in signal processing. The 
most common example is the the notion of bandwidth. The 
bandwidth is usually defined as the frequency range within 
which amplitude response of a filter is is greater than 3 db. In 
this case, the threshold used is the 3 db amplitude response. 

Analyzing algorithm behavior and design of better al- 
gorithms: 

Since different algorithms can be compared using this 
methodology, it can be used a a tool for understanding the 
behavior of different algorithms. For example, why should 
one algorithm have better asymptotic performance than other? 
What parameters in the algorithm control the location of the 
break down point of the curve? Can they be modified to suit 
our requirements? Furthermore, these performance curves can 
be used to design better algorithms using the good features of 
various algorithms. 

Summarizing performance curves: 
An important point is that this methodology allows us 

to summarize many operating curve by a few performance 
curves. In our experiment, each histogram and corresponding 
operating curve resulted from 100 trials. Each curve in Step 3 
of the methodology represents three operating curves or 300 
trials. The final curve in Step 4 of the methodology represents 
3 x 6 = 18 operating curves, or 3 x 6 x 100 = 1800 trials. 
In contrast, most methodologies existing in the literature today 
provide only the operating curves (Step 2 of our methodology). 

Thus, our methodology allows the researcher to convey more 
information in a meaningful way. 

Analytic performance evaluation: 
In case an analytic model is available, it is not necessary to 

run the experiments to compute the operating curve. In fact, the 
probabilities can be computed form the analytic expression for 
the probabilities of mis-detection and false alarm. But we still 
encounter the problem of summarizing the numerous operating 
curves. Our methodology can be applied, without modification 
to the analytic results, just as it is applied to the empirical 
results. Thus, the analytic results can be summarized just as 
we summarized the empirical results. Furthermore, the there 
are cases when either the analytic model of an algorithm is 
not numerically tractable or is not known. In such cases, it is 
possible to approach the performance evaluation problem in a 
quantitative fashion. For more details on analytic performance 
evaluation of vision algorithms, please see [18]. 

Applications: 
A strength of the methodology is that it can be applied to 

any detection problem. The line detection example developed 
in this paper was for demonstrating the application of this 
methodology. This methodology has been partially adapted 
for performance evaluation of object recognition algorithms 
[15] and machine inspection algorithms [16]. The key steps to 
applying this methodology to any algorithm are i) converting 
the algorithm into a detection algorithm, and ii) choosing the 
appropriate signal variable to use as the threshold. 

Another appropriate example where our methodology could 
be used is the detection of comers and junctions [19], [20]. 
To analyze comer, consider an image that can contain a curve 
with or without a single comer. The comer detection algorithm 
outputs an evidence strength that indicates whether there is a 
comer in an image. We can manipulate the angle of the comer 
to find the signal-to-noise threshold. This performance measure 
can be used to study the effect of other variables such as the 
length of the lines making up the corner. A similar approach 
can be used to analyze junction detectors. 

To analyze automatic target detection algorithms, input 
images would either contain image of the target or no target. 
The algorithm would first have to detect the presence or 
absence of the target in the image. Now, one could fix all the 
variables (distance, shape of target, etc.) except the contrast of 
the signal. The contrast could be used to control the signal-to- 
noise ratio and the variable of interest could be the specular 
reflectance of the target. One could study how the performance 
deteriorates as the specular reflectance increases. 

In the case of inspection of machined parts, the vision algo- 
rithm algorithm decides whether a machine part is satisfactory 
(“within spec”) or not (“out of spec”). This is a detection task. 
The errors are either misdetection errors or false alarm errors. 
In this case, the degree of defect in the machined part could 
be used as the signal variable. For more details see [16] 

The task of pose error estimation can be converted into a 
detection task by asking the question: Is the estimated pose 
of the object within specific error bounds or not? A measure 
of error could be computed as follows. After the pose of an 
object is estimated, the average distance between the vertices 
of the original object and the back-projected object could be 
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used as an error measure. A threshold on this error makes [17] D. J. Finney, Probit Analysis. Cambridge, Cambridge Univ. Press, 
converts the problem into a detection task. For more details 
please refer to [ 151. 

VI. CONCLUSION 

We describe a methodology for characterizing and summa- 
rizing the performance of any detection algorithm. It extends 
the previous applications of decision analysis by the addition 
of threshold measures inspired from psychophysics. This is 
a general methodology that can be applied to any detection 
algorithm. 

Note: In a recent paper [21] we have discussed how to 
choose optimal operating points when we are given an ROC 
curve, the prior probability of target and no-target, and the the 
costs associated with each decision. In order to compute the 
optimal operating points, one has to fit smooth curves through 
empirical TOC curves and histograms. This has been addressed 
in [22]. 
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