
A Statistical, Nonparametric Methodology for
Document Degradation Model Validation

Tapas Kanungo, Member, IEEE, Robert M. Haralick, Fellow, IEEE,

Henry S. Baird, Senior Member, IEEE, Werner Stuezle, and David Madigan

AbstractÐPrinting, photocopying, and scanning processes degrade the image quality of a document. Statistical models of these

degradation processes are crucial for document image understanding research. Models allow us to predict system performance,

conduct controlled experiments to study the breakdown points of the systems, create large multilingual data sets with groundtruth for

training classifiers, design optimal noise removal algorithms, choose values for the free parameters of the algorithms, and so on.

Although research in document understanding started many decades ago, only two document degradation models have been

proposed thus far. Furthermore, no attempts have been made to statistically validate these models. In this paper, we present a

statistical methodology that can be used to validate local degradation models. This method is based on a nonparametric, two-sample

permutation test. Another standard statistical deviceÐthe power functionÐis then used to choose between algorithm variables such

as distance functions. Since the validation and the power function procedures are independent of the model, they can be used to

validate any other degradation model. A method for comparing any two models is also described. It uses p-values associated with the

estimated models to select the model that is closer to the real world.

Index TermsÐModel validation, nonparametric statistical tests, permutation tests, document degradation models, simulation models,

OCR.
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1 INTRODUCTION

PRINTING, photocopying, and scanning processes degrade
the image quality of any document. Statistically valid

models of these degradation processes can impact docu-
ment image understanding research in many ways. Degra-
dation models can be used to conduct controlled
experiments to study the breakdown points of OCR
systems, create large multilingual data sets with ground-
truth for training classifiers, design optimal noise removal
algorithms, choose values for the free parameters of the
algorithms, predict OCR performance, and so on. Whereas
research in document understanding started decades ago,
only two document degradation models have been pro-
posed thus far. Furthermore, no attempts have been made
to statistically validate these models.

The current OCR evaluation methods rely on scanned

documents, corresponding hand-entered ASCII ground-

truth strings, and string matching algorithms that compare

the groundtruth string against the OCR-generated string.

The errors in the groundtruth are reduced by a process of

cross-checking. This method is very expensive, laborious,
and prone to errors. Furthermore, since the datasets are
expensive, it is not possible to create large datasets that are
representative of the variety of layout, font, and degrada-
tion levels seen in real-world documents. Despite these
problems, various document databases with groundtruth
have been created.

Our methodology for characterizing OCR algorithms is
based on evaluating the algorithms on synthetically
degraded documents. First, a word processor is used to
create an ideal document in any language, format, or style.
A bitmap version of this document is then created and
degraded using a computer model of the real degradation
process. This method has many advantages. First, since the
ideal document is created using a word processor, the
groundtruth information associated with each characterÐ-
location, identity, font type, etc.Ðis known without error.
Second, the word processor can be used to reformat the
documents (two columns, one column, various font types,
sizes, etc.) to study the sensitivity of the OCR algorithm to
these variables. Third, since the degradation model is under
our control, we can create documents with varying levels of
degradation and study how and where the OCR algorithm
breaks down. Fourth, sample size is not a problem at
allÐany number of degraded samples can be created since
all that needs to be done is to simulate another set of
characters. In addition, there is no dearth of formatted
documentsÐwe create such documents daily, and so do
academic journal publishers. Fifth, the model itself can be
used in creating noise removal algorithms, training classi-
fiers, choosing algorithm parameters, etc.

The main drawback of the above methodology is that it
relies heavily on the simulation model being correct. That is,
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it assumes that the simulation model closely mimics reality.
Thus, it is imperative that we validate the degradation
model against real data. Only then can the simulations be
used in place of real data. If the degradation model is not
validated, results on the synthetically degraded documents
should be used with caution, though they are still useful
since they give some indication about the performance of the
OCR algorithm.

In this paper, we present a statistical methodology that
can be used to validate the local degradation models. This
method is based on a nonparametric, two-sample permuta-
tion test. Another standard statistical deviceÐthe power
functionÐis then used to choose between algorithm
variables such as distance functions. Since the validation
and the power function procedures are independent of the
model, they can be used to validate any other degradation
model. A method of comparing any two models is also
described. It uses p-values associated with the estimated
models to select the model that is closer to the real world.

In Section 2, we survey the related literature in the areas
of degradation models, model validation, and statistical
hypothesis testing and discuss their shortcomings. In
Section 3, we describe our document degradation model
for the local distortions that occur while printing, photo-
copying, and scanning documents. The model is indepen-
dent of the language in which the document is written. Our
validation methodology is described in Section 4 and in
Section 5, we apply it to datasets with known distributions
to understand the performance of the permutation tests. In
Section 6, we give results of validation experiments on
document images and, in Section 7, we present conclusions.

2 RELATED LITERATURE

Most OCR algorithms make use of explicit or implicit
models of degradation. The authors, however, have not
proposed statistical methods for validating or comparing
these models. An explicit degradation model that was
recently proposed is that of Baird [2], [3], [4]. Unfortunately,
his degradation model is not validated either. Furthermore,
his paper advocates the use of isolated, synthetically
degraded characters. Thus, the degradation due to merging
of neighboring characters is not reflected in his model. In
addition, the unigram and bigram occurrence probabilities
of characters in real-world text are not reflected in isolated-
character experiments.

In contrast, our document degradation model, which is
described in Section 3, advocates the use of complete
documents for generating synthetically degraded charac-
ters. Thus, it takes into account the degradations arising due
to merging of characters, the occurrence probabilities of
individual characters, and the variability in the layout
structure of the documents. The pixel degradations them-
selves are based on a local morphological model, which
models the final spatial characteristics of the degradation
process rather than the underlying physical process.

To the best of our knowledge, the only other work on
validation of document degradation models is that of Nagy
[17], and Li et al. [15], [16]. They are of the opinion that a
degradation model is valid if the OCR confusion matrices
that result from synthetically degraded documents are

similar to the OCR confusion matrices produced from real
documents. Unfortunately, this methodology validates the
model-OCR combination and not the model itself. For
instance, if the OCR system automatically filters noise, their
validation process will not detect any difference between
the real documents and the synthetically degraded
documents even if the degradation process adds noise to
the document. Furthermore, although they treat the OCR as
a black box, the OCR algorithm itself has many parameters
that can greatly influence the decisions of the validation
procedure. Another drawback of their approach is that they
do not indicate how their validation procedure can be
compared to other validation procedures.

Our validation method, on the other hand, reduces the
problem of model validation to a nonparametric statistical
hypothesis testing problem, which is a well-studied and
accepted method in statistics [7], [6]. In addition, we use
simple character distance functions for the validation
procedure, instead of entire OCR systems. Although the
validation process now depends on these distance func-
tions, they are much simpler than OCR black boxes. Finally,
we provide a technique for comparing our validation
method with other validation methods. This comparison
procedure is based on ªpower functions,º which again are
standard statistical devices for comparing hypothesis
testing procedures.

3 A DOCUMENT DEGRADATION MODEL

In this section, we describe a document degradation model
for local distortions that are introduced during the printing,
photocopying, and scanning processes. A model for the
perspective and illumination distortions that get introduced
when we photocopy or scan thick bound books is described
in [11], [12], [8].

Our local document degradation model accounts for
1) pixel inversion (from foreground to background and vice
versa) that occurs independently at each pixel due to light
intensity fluctuations, sensitivity of the sensors, and the
thresholding level and 2) blurring that occurs due to the
point-spread function of the scanner optical system. We
model the pixel-flipping probability of a background pixel
as an exponential function of its distance from the nearest
boundary pixel. The parameter �0 is the initial value for the
exponential and the decay speed of the exponential is
controlled by the parameter �. The foreground and back-
ground four-neighbor distance are computed using a
standard distance transform algorithm (see [5]). The
flipping probabilities of the foreground pixels are similarly
controlled by �0 and �. The parameter � is the constant
probability of flipping for all pixels. Finally, the last
parameter k; which is the size of the disk used in the
morphological closing operation, accounts for the correla-
tion introduced by the point-spread function of the optical
system.

Thus, the degradation model has six parameters:
� � ��; �0; �; �0; �; k�. These parameters are used to degrade
an ideal binary image as follows:

1. Compute the distance d of each pixel from the
character boundary.
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2. Flip each foreground pixel with probability
p�0j1; d; �0; �� � �0e

ÿ�d2 � �:
3. Flip each background pixel with probability

p�1j0; d; �0; �� � �0e
ÿ�d2 � �:

4. Perform a morphological closing operation with a
disk structuring element of diameter k.

Software for simulating noisy documents using the
above degradation model is available from the University
of Washington English Document Database I and the model
has also been described in the literature [12], [11]. The
application of the various steps of the model is illustrated in
Fig. 1. In Fig. 1a, we show an ideal character. The distance
transform of the foreground of Fig. 1a is shown in Fig. 1b.
The brighter pixels are further away from the pixel
boundary. The distance transform of the background is
shown in Fig. 1d. The ideal image after its pixels have been
flipped according to the model is shown in Fig. 1d. The final
image after the closing operation is shown in Fig. 1e.

The procedure described above works on bit-mapped
images. Since there is no restriction on the size of the image
that can be degraded, or the language of the written text, an
entire document page image can be degraded using this
model. In fact, since typesetting is under the experimenter's
control, the same text can be reformatted in various styles
(single column, multiple column, report, book, etc.), font
types (Roman, Helvetica, etc.), and font sizes (9pt, 10pt, 12pt,
etc.). Thus, the performance of any character recognition

system can be studied by providing as input the same (or
different) text formatted in various styles with varied but
controlled degradation.

Now, we show examples where we degrade complete
document pages using our degradation model. In Fig. 2a,
we show an ideal document formatted in LaTex, using the
IEEE Transactions typesetting style. In Fig. 2b, we show a
degraded version of the document in Fig. 2a.

The noise-free documents are typeset using the
LaTeX formatting system [14], [13]. The ASCII files contain-
ing the text and the LaTeX typesetting information are then
converted into a device-independent format (DVI) using
LaTeX. A program called DVI2TIFFÐwhich is a modified
version of a DVI file previewer called XDVI [19]Ðis run to
produce one bit/pixel binary images in TIFF format from
the DVI files. Besides producing the binary images of the
documents, DVI2TIFF also produces the groundtruth
information regarding each character in the document
image.

The local document degradation model is another
program called DDM. This program takes as input an ideal
binary document image in TIFF format and a file containing
the degradation model parameter values and produces the
binary degraded images in TIFF format.

Both programsÐDVI2TIFF and DDMÐare implemented
using the C language and have been tested on SUN and
IBM machines running the UNIX operating system. The
software is available on the UW CD-ROM-1 [18].

4 MODEL VALIDATION AND PARAMETER

ESTIMATION

4.1 Statistical Problem Definition

In this section, we formulate the degradation model
validation problem as a statistical problem. Although
degradation of the document is over the entire page, the
degradation process itself is local. That is, degradation in
one region does not influence the degradation process in
another sufficiently distant region. More precisely, the
degradation at a pixel is influenced only by pixels within
a local neighborhood. Thus, one way to characterize the
degradation process is to study the degradation of local
patterns. Since the most common patterns that occur on a
document page are characters, we statistically characterize
the degradation of individual characters on the page and
use this characterization to estimate the parameters of a
degradation model that produces similar degradations.

Assume that a scanned character is represented by a
30� 30 matrix of zeros and ones. This matrix can be
represented as 1; 000� 1 vector x (30� 30 � 1; 000�. Let B
be the space of D = 1,000-dimensional binary vectors, that
is, B � f0; 1gD. Now, let x1; x2; . . . ; xN 2 B be independent
and identically distributed D-dimensional vectors repre-
senting instances of degraded characters produced from the
same class !: That is, each xi is a degraded character that is
produced from the same ideal pattern ! (say the ideal
character ªeº) and the same degradation process. The
validation problem we need to address is:

Suppose we are given a set of real degraded instances
x1; . . . ; xN 2 B of the pattern ! and another set of synthetic
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Fig. 1. Local document degradation model: (a) Ideal noise-free character.

(b) Distance transform of the foreground. (c) Distance transform of the

background. (d) Result of the random pixel-flipping process (the

probability of a pixel flipping is p�0jd; �; f� � p�1jd; �; b� � �0e
ÿ�d2

; here,

� � � � 2, �0 � �0 � 1�. (e) Morphological closing of the result in (d) by a

2� 2 binary structuring element.



degraded instances y1; . . . ; yM 2 B of the pattern !: Test the
null hypothesis that y1; . . . ; yM and x1; . . . ; xN ; are samples
taken from the same underlying population, to a specified
significance level �.

In our case D is large, typically on the order of 1,000.

Thus, the number of possible xis is 21;000, which is

approximately equal to 10300Ða dauntingly large number.

The available sample size, N; is typically on the order of

1,000. Thus, the xis occupy the space B extremely sparsely,

which implies that the density function cannot be estimated

reliably from the sample. This fact prohibits us from

performing any standard statistical test based on density

estimates. In the next section, we describe a nonparametric

method that overcomes this problem.

4.2 Permutation Tests and Model Validation

In this section, we describe a nonparametric validation

procedure that can be used to statistically validate any

document degradation model. Suppose we are given a set of

real degraded characters X � fx1; x2; . . . ; xNg; and another

set of artificially degraded characters Y � fy1; y2; . . . ; yMg
that were created by perturbing an ideal character with a

document degradation model. We can assume that the

characters xi and yi are binary matrices of size (approxi-

mately) 30� 30. Note that every xi and yi can be of different

size because the scanned characters can be of different sizes.

The question that needs to be addressed is whether or not the

xis and the yis come from the same underlying population. At

this point, it does not matter where the xis and the yis came

from, they could both be synthetically generated, or both be

real instances, or one of them could be synthetic and the other

real. A statistical hypothesis test can be performed to test the

null hypothesis that the underlying population distributions

of the xis and yis are the same.
Standard parametric hypothesis testing procedures are

not usable for our problem because the sizes of binary

matrices xi and yi are not fixed. Furthermore, the size of the

space to which they belong is very large (approximately 2900

if we assume each character to be of size 30� 30) and so while

in principle it is possible to estimate the density function, in

practice it is not possible to do so because of the small sample

size. Instead, we now describe a nonparametric permutation

test (see [7], [6]) that performs this hypothesis test.

1. Given

a. the real data X � fx1; x2; . . . ; xNg,
b. the synthetic data Y � fy1; y2; . . . ; yMg,
c. a distance function ��X;Y � on sets,
d. a distance function ��x; y� on characters, and
e. the size � of the test (i.e., misdetection rate = �).

2. Compute d0 � ��X;Y �.
3. Create a new sample Z � fx1; . . . ; xN; y1; . . . ; yMg.

Thus, Z has N �M elements labeled zi;
i � 1; . . . ; N �M.

4. Randomly permute (reorder) Z.
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Fig. 2. (a) An ideal document page typeset using LaTeX and IEEE Transactions typesetting style. (b) A synthetically degraded version of the

document in (a).



5. Partition the set Z into two sets X0 and Y 0, where
X0 � fz1; . . . ; zNg and Y 0 � fzN�1; . . . ; zN�Mg.

6. Compute di � ��X0; Y 0�.
7. Repeat steps 4, 5, and 6 K times to get K distances

d1; . . . ; dK .
8. Compute the empirical distribution of the dis:

P �d � v� � #fkjdk � vg=K.
9. Compute the p-value: �0 � P �d � d0�.
10. Reject the null hypothesis that the two samples come

from the same population if �0 < �.

The above procedure, which is illustrated in Figs. 3 and 4,
computes the null distribution of the distance function
��X;Y � nonparametrically. In a standard parametric hypoth-
esis-testing procedure, the forms of the distributions of x and
y are known (usually assumed to be Gaussian) and, so, the
null distribution of the test statistic ��X;Y � is known. In
contrast, the permutation test does not make any prior
assumption regarding the distributions ofx and y: Instead, an
empirical null distribution is created by randomly permuting

the data set Z and creating a histogram of computed test
statistics (dis).

By design, the size of the test, �; is fixed. Thus,
irrespective of the distance function ��X;Y �, the percentage
of time that the validation procedure rejects a true null
hypothesis that the two samples are from the same
underlying population is �: In other words, the probability
of misdetection is �: What is not fixed is the probability of
false alarm, 
: which is the probability that the procedure
claims that X and Y come from the same underlying
population when, in fact, they come from different under-
lying populations. Although the use of various distance
functions for � and � gives rise to the same probability of
misdetection �; each has a different probability of false
alarm 
. It is important to note that if two samples X and Y
pass the validation procedure, this does not mean that we
accept the null hypothesis. Rather, it means that we do not
have enough statistical evidence to reject the null hypoth-
esis. When we reject a null hypothesis, however, this does
mean that we have enough statistical evidence to reject it.

4.3 Power Functions

Let us assume that the xis are distributed as F ��X� and the

yis are distributed as F ��Y �, where �X and �Y are the

parameters of the distributions. Let the null hypothesis HN

and the alternate hypothesis HA be

HN : �X � �Y �1�

HA : �X 6� �Y : �2�
The size of the test, �; is fixed by the algorithm designer and
is given as

� � P �HAjHN is true�: �3�
The plot of 1 minus the probability of false alarm as a
function of � is the power function (see Fig. 5). Thus, if we fix
the distribution parameter of the xis at �X � �0, and vary
the distribution parameter value �Y � � for the yis, the
power function is denoted by 
�0

���, and is given by


�0
��� � P �HAj�X � �0 and �Y � �� : �4�

Thus, 1ÿ 
�0
��� is the probability of false alarm. The power

function should have a minimum at �X � �Y � �0; with

�0
��0� � � and should increase on either side and go up to 1

when �Y � � is very far from �0.
Let us say there are two validation schemes A and B with

test size � and power functions 
A�0
��� and 
B�0

���. Since the
misdetection probability � is the same for both schemes, A is
better than B if the false alarm rate of A is less than the false
alarm rate of B: That is, A is better than B if 1ÿ 
A�0

��� <
1ÿ 
B�0

���or 
A�0
��� > 
B�0

���. If this relation is true for all values
of �, the procedure A is said to be uniformly more powerful
than B: That is, the scheme A is better than scheme B if the
power function plot ofA is above the power function plot ofB
for all values of �: Generalizing, if there are many validation
schemes, the one whose power function is above all other
power functions is the best scheme. If the power functions
intersect, there is no clear winner; for some regions in the
parameter space, one scheme is better while in other regions,
the other scheme is better.
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Fig. 3. Here, we show how the nonparametric test works when the two
samples X and Y are from arbitrary distributions. For our problem, xi
and yi are binary characters. In this case, the null distribution cannot be
determined theoretically.

Fig. 4. This figure shows the permutation procedure for computing the

null distributions.



For a given validation scheme, if we increase the
sample sizes N and M; the power function changes and
the new power function is higher than the old power
function, and so by definition is more powerful. Thus, the
sensitivity, i.e., the width of the notch at the minimum, is
a function of the sample sizes N and M: When the
sample size is small, the notch is broader, and when the
sample size is large, the notch is sharper. This fact is used
in deciding what sample size should be used for the test:
Choose the sample size such that the desired probability
of false alarm is attained when the parameters �X and �Y
differ by a specified amount ��.

Finally, our validation scheme described in the previous

section is dependent on two distance functions � and �. Thus,

each choice of � and � gives rise to a different power function.

The combination that produces the highest power function is

the best choice. See [1] for details on power functions.

4.4 Distance Functions, Outliers, and Robust
Statistics

Various distance functions��X;Y � can be used for computing
the distance between the sets of characters X and Y : We use
the following symmetric distance functions for � (see Fig. 6).

Mean Nearest-Neighbor Distance:

��X;Y � � �Mean�X;Y � � �Mean�Y ;X� � �Mean�X;Y �
N �M ;

where

�Mean�Y ;X� �
X
x2X

min
y2Y

��x; y�
� �

�Mean�X;Y � �
X
y2Y

min
x2X

��x; y�
� �

:

Trimmed Mean Nearest-Neighbor Distance:

��X;Y � � �Trim�X;Y � � �Trim�Y ;X� � �Trim�X;Y �
2

;

where

�Trim�Y ;X� � Trimx2X min
y2Y

��x; y�
� �

�Trim�X;Y � � Trimy2Y min
x2X

��x; y�
� �

:

Here, the Trim function accepts as input a set of real numbers,
orders them, and then discards the top and bottom 10 percent
and returns the mean of the remaining 80 percent.

Median Nearest-Neighbor Distance:

��X;Y � � �Med�X;Y � � ��Med�Y ;X� � �Med�X;Y ��=2;
where

�Med�Y ;X� � Median min
y2Y

��x; y�
� �

�Med�X;Y � � Median min
x2X

��x; y�
� �

:

Notice that the mean nearest-neighbor distance is not a
robust distance measure. That is, if for some reason a data
point is far from the norm, the p-value computation
becomes very sensitive to this data point. This can occur,
for example, when a character in the real data set X is
actually a ªcº (instead of being an ªeº), and is identified
incorrectly as an ªe.º Yet, another outlier source is
connected characters: when characters are extracted from
a real document pieces of neighboring characters might get
included in the bounding box of the extracted character.
The median and the trimmed mean distance measures are
robust against outliers since they do not look at the tails of
the distribution. One would expect that these measures
should work better in cases where there are outliers.

The distance function ��x; y� mentioned earlier is the
distance between two individual characters x and y: We use
the Hamming distance for �:This is computed by counting the
number of pixels where the characters x and y differ after the
centroids of x and y have been registered. A variety of other
character distances ��x; y� and set distance functions ��X;Y �
could have been used (e.g., the Hausdorff distance, rank-
ordered Hausdorff distance, etc.). The combination of
character distance ��x; y� and set distance ��X;Y � that give
rise to the best power function is the best pair of character and
set distances to use for the validation procedure.

5 NULL DISTRIBUTION FOR GAUSSIAN

POPULATIONS

In this section, we compute the null distributions of two set
distances ��X;Y � when xi and yi are Gaussian distributed.
We show that when they are each Gaussian distributed with
a known variance �2, the two distance functions considered
are �2 distributed under the null hypothesis. Such closed-
form solutions for the null distributions are possible only
when the underlying distributions are known a priori.
However, this is not the case, in generalÐthe Gaussian
assumptions might be appropriate in some settings but
completely wrong in other settings. Thus, the nonpara-
metric permutation method described in Section 4 is a much
better approach to computing the null distributions when
the forms of the sample distributions are not known.
Nevertheless, for the purpose of validating the software and
algorithm for computing the empirical null distribution, the
Gaussian case is very useful since it allows us to compare
the empirical distributions against known (theoretically
computed) distributions.
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Fig. 5. The true parameter of the sample X is �X: The parameter �Y of
the sample Y is updated and the corresponding probability of the test
rejecting the null hypothesis that X and Y are from the same underlying
distribution is plotted. The resulting curve is the power function.



5.1 Intercluster Mean Distance

Let X � fx1; x2; . . . ; xNg be a set such that xi 2 R and xi �
N��X; �2�: Similarly, let Y � fy1; y2; . . . ; yNg be a set such

that yi 2 R and yi � N��Y ; �2�. The problem is to test the

null hypothesis that �X � �Y when �2 is known.
Now, we know that

�̂X � 1

N

XN
i�1

xi � N��X; �2=N� �5�

�̂Y � 1

N

XN
i�1

yi � N��Y ; �2=N�: �6�

Therefore,

�̂X ÿ �̂Y � N��X ÿ �Y ; 2�2=N� �7�
and ����������

N=2
p

��̂X ÿ �̂Y �=� � N��X ÿ �Y ; 1� : �8�
Now, let

t � ��X;Y � � N

2�2
��̂X ÿ �̂Y �2:

Thus, under the null hypothesis that �X � �Y , we have

t � ��X;Y � � �2
1: �9�

Thus, instead of empirically computing the distributions

as described in Section 4, we can use the above analytic

form of the distribution to accept or reject the null

hypothesis. Moreover, we see that the empirical method

has reduced to a standard statistical technique when the

underlying distribution is known to be Gaussian.

5.2 Likelihood Distance

In the previous section, we picked a particular distance

function ��X;Y � and showed that its null distribution is �2
1.

In this section, we pick a distance function based on the

likelihood function of the data. It turns out that this distance

function is the same as the one used in the previous section.

LetX � fx1; x2; . . .xNg, where xi 2 R and xi � N��X; �2�:
Similarly, let Y � fy1; y2; . . . ; yNg, where yi 2 R, and
yi � N��Y ; �2�. The problem is to test the null hypothesis that

�X � �Y � �.
Let �Y �X� denote the distance of set X from set Y . Here,

we use a function of the likelihood for �

�X�Y � � f�P �y1; . . . ; yN jx1; . . . ; xN; ��� �10�

�Y �X� � f�P �x1; . . . ; xN jy1; . . . ; yN; ���: �11�
Ingeneral, theabovedistancesneednotbesymmetric inXand

Y :Hence, we also consider symmetric distances of the form

��X;Y � �
f�P �y1; . . . ; yN jx1; . . . ; xN; ��P �x1; . . . ; xN jy1; . . . ; yN; ���:

�12�
Also, we can consider the right hand side in the equation

above divided by log max� P �x1; . . . ; xN; y1; . . . ; yN j�; ��.
That is,

��X;Y � �

log
P �y1; . . . ; yN jx1; . . . ; xN; ��P �x1; . . . ; xN jy1; . . . ; yN; ��

max� P �x1; . . . ; xN; y1; . . . ; yN j�; ��
� �

:

�13�
We can use the standard rules of probability theory to

manipulate the above equation as follows:

P �y1; . . . ; yN jx1; . . . ; xN; ��
�
Z 1
ÿ1

P ��; y1; . . . ; yN jx1; . . . ; xN; ��d�

�
Z 1
ÿ1

P �y1; . . . ; yN; x1; . . . ; xN; �; ��
P �x1; . . . ; xN; �� d�

�
Z 1
ÿ1

P �y1; . . . ; yN jx1; . . . ; xN; �; ��P �x1; . . . ; xN; �; ��
P �x1; . . . ; xN; �� d�

�
Z 1
ÿ1

P �y1; . . . ; yN j�; ��P �x1; . . . ; xN j�; ��P ��; ��R1
ÿ1 P �x1; . . . ; xN j�; ��P ��; ��d�

d�:

�14�
Now, we make the assumption that � and � are
independent so that P ��; �� � P ���P ���: Furthermore, we

assume that � and � have a uniform prior. Although this

implies the prior is improper (since its integral is not equal
to 1), the posterior distribution integrates to 1. Thus,

P ��; �� � P ���P ��� / �: But the � in the numerator and
the denominator of (14) cancel out and the numerator can

now be written as follows:

P �y1; . . . ; yN j�; ��P �x1; . . . ; xN j�; ��P ��; ��

� 1������
2�
p

�

� �N
eÿ

1
2�2

PN

i�1
�yiÿ��2 � 1������

2�
p

�

� �N
e
ÿ 1

2�2

PN

j�1
�xjÿ��2

� 1������
2�
p

�

� �2N

e
ÿ 1

2�2

PN

i�1
�yiÿ��2�

PN

j�1
�xjÿ��2

h i
:

�15�
Since the denominator is not a function of either � or

y1; . . . ; yN , it is a constant. The denominator can be
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Fig. 6. The black dots are elements of the set X and the white dots are
elements of the set Y . In the figure on the left, the distance ��X;Y � from
Y to X is computed by summing the distance of each yi to the nearest
xi: Similarly on the right the distance ��Y ;X� is computed. The final
symmetric distance ��X; Y � is computed by taking the mean.



computed by integrating out �; y1; . . . ; yN from the prob-

ability density in (15). Thus,

P �y1; . . . ; yN jx1; . . . ; xN; ��

�C
Z 1
ÿ1

1������
2�
p

�

� �2N

e
ÿ 1

2�2

PN

i�1
�yiÿ��2�

PN

j�1
�xjÿ��2

h i
; �16�

where the constant of integration C can be found by

equating the right hand side to 1. In order to compute the

integral, we simplify the exponent inside the integral:

XN
i�1

�yi ÿ ��2 �
XN
j�1

�xj ÿ ��2

�
XN
i�1

�yi ÿ �y� �yÿ ��2 �
XN
j�1

�xi ÿ �x� �xÿ ��2

�
XN
i�1

�yi ÿ �y�2 �
XN
i�1

�yi ÿ �y���yÿ �� �N��yÿ ��2

XN
j�1

�xi ÿ �x�2 �
XN
j�1

�xi ÿ �x���xÿ �� �N��xÿ ��2

�
XN
i�1

�yi ÿ �y�2 �
XN
j�1

�xi ÿ �x�2 �N��yÿ ��2 �N��xÿ ��2:

�17�
But,

��yÿ ��2 � ��xÿ ��2 � �x2 � �y2 � 2 �2 ÿ 2�
�x� �y

2

� �� �
� �x2 � �y2 ÿ 2�

�x� �y

2

� �2

� 2 �2 ÿ 2�
�x� �y

2

� �
� �x� �y

2

� �2
" #

� ��x
2 � �y2 ÿ 2�x�y�

2
� 2 �ÿ �x� �y

2

� �� �2

� ��xÿ �y�2
2

� 2 �ÿ �x� �y

2

� �� �2

:

�18�
Thus, from (17) and (18)

X
i�1

N�yi ÿ ��2 �
XN
j�1

�xj ÿ ��2

�
XN
i�1

�xi ÿ �x�2 �
XN
j�1

�yj ÿ �y�2

�N
2
��xÿ �y�2 � 2N �ÿ �x� �y

2

� �� �2

:

�19�

Also, sinceZ 1
ÿ1

1������
2�
p ��= �������

2N
p � e

ÿ 1
2�2=2N

�ÿ �x��y
2� �2

d� � 1; �20�

we have

P �y1; . . . ; yN jx1; . . . ; xN; ��

� C 1������
2�
p

�

� �2N ������
2�
p

��������
2N
p �e

1
2�2=2N

PN

i�1
�xiÿ�x�2�

PN

j�1
�yjÿ�y�2�N2 ��xÿ�y�2

h i
:

�21�
Now, to get the value of C, we proceed as follows:

1 � C
Z 1
ÿ1

. . .

Z 1
ÿ1

1������
2�
p

�

� �2N

e
ÿ 1

2�2

PN

i�1
�yiÿ��2�

PN

j�1
�xjÿ��2

h i
dy1 . . . dyNd�

� C
Z

1������
2�
p

�

� �N
eÿ

1
2�2

PN

i�1
N�xiÿ�x�2�N��ÿ�x�2

� �
d�

� C 1������
2�
p

�

� �N ������
2�
p

������
N
p e

ÿ 1
2�2=N

PN

i�1
�xiÿ�x�2

� �
:

�22�
Thus, we have computed C to be

C � 1������
2�
p

�

� �ÿ�N�1� �����
N
p

e
1

2�2=N

PN

i�1
�xiÿ�x�2

� �
: �23�

Now, we can write the complete conditional density as

P �y1; . . . ; yN jx1; . . . ; xN; ��

� 1������
2�
p

�

� �ÿ�N�1� �����
N
p

e
1

2�2=N

PN

i�1
�xiÿ�x�2

� �" #

� 1������
2�
p

�

� �2N ������
2�
p

��������
2N
p � e

1
2�2=2N

PN

i�1
�xiÿ�x�2�

PN

j�1
�yjÿ�y�2�N2 ��xÿ�y�2

h i

� 1������
2�
p

�

� �N
�
���
2
p
� eÿ 1

2�2

PN

i�1
�yiÿ�y�2�N2 ��xÿ�y�2

� �
:

�24�
Thus, we can use 2�2 times the negative exponent of the

conditional probability, as given in (24), as the test statistic
�X�Y �: Notice that it is not symmetric in X and Y .

�X�Y � � f�P �y1; . . . ; yN jx1; . . . ; xN; ��� �25�

� ÿ logP �y1; . . . ; yN jx1; . . . ; xN; ��
�N

2
log�2��2� ÿ 1

2
log�2�

�26�

�
XN
i�1

�yi ÿ �y�2 �N
2
��xÿ �y�2: �27�

�Y �X� � f�P �x1; . . . ; xN jy1; . . . ; yN; ��� �28�

� ÿ logP �x1; . . . ; xN jy1; . . . ; yN; ��
�N

2
log�2��2� ÿ 1

2
log�2�

�29�

�
XN
i�1

�xi ÿ �x�2 �N
2
��yÿ �x�2: �30�
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In order to get a symmetric test statistic, we can look at the

product of the conditional probabilities, so that

�X�Y � � �Y �X�

�
XN
i�1

�yi ÿ �y�2 �N
2
��xÿ �y�2 �

XN
i�1

�xi ÿ �x�2 �N
2
��yÿ �x�2:

�31�
But, we know that the sum of the within-cluster scatter and

the between-cluster scatter is equal to the total scatter. Thus,

XN
i�1

�yi ÿ �y�2 �N
2
��xÿ �y�2 �

XN
i�1

�xi ÿ �x�2

�
XN
i�1

xi ÿ �x� �y

2

� �� �2

�
XN
j�1

yj ÿ �x� �y

2

� �� �2

:

Notice that for given data sets, the above summation is the

same constant regardless of which points go with xi and

which with yi. Thus,

�X�Y � � �Y �X� � C �N
2
��yÿ �x�2; �32�

where C is a constant. Thus, a symmetric test statistic based

on likelihood is

��X;Y � � N

2�2
��yÿ �x�2: �33�

The reason for normalizing by �2 will become clear shortly.
The Monte Carlo hypothesis tests can now be conducted

with the distance functions � defined in this section. In

Fig. 7, we show that the theoretically computed null

distribution agrees with the null distribution computed

empirically by random permutations.

It is important to statistically compare the test statistics
�X�Y �; �Y �X�; and ��X;Y � computed in this section. Notice
that

�x � N�0; �2=N�;
�y � N�0; �2=N�;

�xÿ �y � N�0; 2�2=N�:
Thus,

��xÿ �y�2 � 2�2

N
�2

1

and

��X;Y � � N

2�2
��xÿ �y�2 � �2

1: �34�

Thus, ��X;Y � has a mean of 1 and variance of 2: Similarly,

1

�2

XN
i�1

�yi ÿ �y�2 � �2
Nÿ1:

Thus,

1

�2

XN
i�1

�yi ÿ �y�2 � N

2�2
��xÿ �y�2 � �2

Nÿ1 � �2
1;

so that

�X�Y � � �2
N: �35�

We see that �X�Y � has a mean of N and variance of 2N: This
implies that ��X;Y � is a more powerful test statistic (in
terms of false alarms) than �X�Y � or �Y �X�.

6 EXPERIMENTAL PROTOCOL AND RESULTS

In this section, we outline the protocol we use to conduct
the experiments. Here, we give all the sample sizes we use,
the number of trials that are run at different stages, the exact
model parameter values that are used for generating the
synthetically degraded characters, the impact of the
distance functions, etc. Three types of experiments are
possible:

Synthetic vs. Synthetic: One sample X is synthetically
created using the document degradation model, with a
fixed model parameter value. Then, many samples Y are
generated, again using the model, but with different
parameter settings. The validation procedure can be run
on the samples X and Y and the power function
generated. This experiment is in part a sanity check for
the methodology: If it does not work on controlled
synthetic data, there is little point in trying it on real data.

Real vs. Real: This experiment tests for systematic dissim-
ilarities between two image populations (e.g., rotations,
fonts, etc.). Note that this use of the validation procedure
is independent of the degradation model.

Real vs. Synthetic: Here, the sample X consists of real
degraded characters and the sample Y is generated by
varying the degradation model parameter �. The
validation procedure is run on the X and Y samples
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Fig. 7. Empirical and theoretical null distributions for two sample tests.
SamplesX and Y of size N � 75 are drawn from N�15; 1�. The empirical
null distribution is computed as described in Section 4. We use 1,000
random permutations for computing the distribution. The distance
function used is t � ��X;Y � � N��xÿ �y�2=�2�2�. The theoretical distribu-
tion of t is �2

1: The empirical and theoretical plots have been plotted
together in this figure.



and a power function is generated. This experiment tests

whether or not the synthetic characters are actually close

to the real characters.

6.1 Protocol for Synthetic vs. Synthetic

The following protocol is used for creating the samplesX and

Y : The distribution parameter �X is fixed with the following

parameter component values: �f � �b � 0, �0 � �0 � 1, and

� � � � 1:5 and structuring element size k � 5. The distribu-

tion parameter �Y is varied by varying � and �: In our

experiments, we make � equal to �. The other parameter

components of �Y Ð�f ; �b; �0; �0; kÐare made equal to the

corresponding components of the model parameter �X . In all

cases, the noise-free document is the same (a LaTeX

document page formatted in IEEE Transactions style) and

the same set of 340 ªeº characters (Computer Modern Roman

10 point font) are extracted from the page to create the

samples X and Y .
The validation procedure parameters used are as

follows:

1. Sizes of samples X and Y : N �M � f10; 20; 60g.
2. Number of permutations: K � 1; 000.
3. Significance level of the test: � � 0:05.

4. Number of repetitions used in computing the power
function: T � 100.

5. The character-to-character distance ��x; y� used is the
Hamming distance.

6. The set-to-set distance ��X;Y � used is the mean
nearest-neighbor distance.

The noise-free document is shown in Fig. 8a. The

degraded document generated with model parameter �X

is shown in Fig. 8b. The power functions for sample sizes

10, 20, 60 are shown in Fig. 9. The power function

corresponding to sample size 10 is the widest and the

power function corresponding to sample size 60 is the

narrowest. Note that all three power functions give a

misdetection (reject) rate close to � � 0:05 when �Y is close

to �X: (Only the � component, which is equal to 1.5 for �X,

is shown in the plot.) Furthermore, when the � component

for �Y is far from 1.5, the misdetection rate is close to 1.0,

which implies that the validation procedure can distinguish

the two samples with high probability. An image generated

with � � � � 1:7 that the validation procedure accepted

with a probability close to 0.9 is shown in Fig. 8c. Two

document images generated with parameter values � �
� � 2:0 and � � � � 0:9 that are easily rejected by the

validation procedure are shown in Fig. 8d and Fig. 8e,

respectively.
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Fig. 8. Local document degradation model. (a) Subimage of the noise-free document. (b) Degraded document generated with � � � � 1:5. (c) A

degraded image accepted as similar to (b), � � � � 1:7, (d) A degraded image rejected as similar to (b), � � � � 0:9. (e) A degraded image rejected

as similar to (b), � � � � 2:0. The sample size used is 60.



6.2 Protocol for Real vs. Real Experiment

First, various European language texts are generated using

the Adobe Times-Roman typeface at 8 point. Next, these

documents are printed on a Canon laser printer and then

scanned at 400 pixels per inch using a Canon scanner.

Lower-case ªeºs are extracted semiautomatically by OCR

(thus, some characters possess artifacts resulting from

resegmentation). From among these, 3,000 characters are

selected by two persons working independently to avoid

misclassifications.
Before selecting the two populations, we randomly

shuffle the real data in order to obscure any systematic

per-page dissimilarities (due to, for example, skew scale

variations). The validation procedure does not reject the

null hypothesis that the two samples are from the same

underlying population. Repeated trials give a reject rate

close to 0.05, the significance level designed into the test.

6.3 Outliers and Distance Function Comparisons

The validation procedure protocol is as follows: The

significance level � is fixed at 0.05, the sample sizes N �M
used are 10, 20, and 60, the number of permutations K for

creating the empirical null distribution is 1,000, and the

number of trials T for estimating the misdetection rate is 100.
We studied the sensitivity of the validation procedure to

the set distance ��X;Y � as follows: The data setsX and Y are

collections of (synthetic) degraded characters ªe.º Degrada-

tion parameter values for X are fixed at � � � � 1:5, but the

corresponding degradation parameters for Y are varied from

0.6 to 2.4. The Hamming distance is used for the character-to-

character distance ��x; y�: The sample size ofX and Y is fixed

at N �M � 60: The mean, trimmed mean, and median

distances are used to compute the power function, in both the

presence and absence of outliers.

Figs. 10a, 11a, and 12a show the power functions in the
absence of outliers when the mean and the trimmed mean
distances are used. Next, we introduced outliers into the
data set X by replacing five degraded ªeºs with degraded
ªcºs. The Y data set is unchanged. Figs. 10b, 11b, and 12b,
show the power functions in the presence of outliers.
Clearly, the median and trimmed mean nearest-neighbor
distances are more robust against outliers since the
corresponding power functions are not affected. Further-
more, it can be seen that the median NN distance function,
in the outlier-free case, is less ªpowerfulº than the mean
NN distance function since the median distance power
function lies below the mean distance power function plot.
Finally, it can be seen that the 10 percent trimmed
NN distance function is superior to the other two distance
functions, since the corresponding power function is robust
against outliers and at the same time higher.

6.4 Protocol for Validating Real vs. Synthetic
Degradations

The ideal data is a LaTeX formatted document. The IEEE

Transactions style is used for typesetting the document. The

corresponding ideal binary image and character ground-

truth are created using the DVI2TIFF software. The ideal

document is created at 300� 300 dots/inch resolution and

the size of the binary document in pixels is 3; 300� 2; 550.

This document is printed using a SparcPrinter II. Next, the

original printed document is photocopied five times using a

Xerox photocopierÐonce at the normal setting, twice with

darker settings, and twice with lighter settings. Finally, the

five photocopied documents are scanned using a Ricoh

scanner. The scanner is set at 300� 300 dots/inch resolu-

tion. The rest of the scanner parameters are set at normal

settings. The scanned binary image is of size 3307� 2544.

The parameters are then estimated using the protocol

specified in [8]. In all cases, the noise-free document is the

same (a LaTeX document page formatted in IEEE Transac-

tions style) and the same set of 340 characters ªeº

(Computer Modern Roman 10 point font) is extracted from

the page to create the synthetic population Y .
The validation procedure parameters used are as

follows:

1. Sample sizes of scanned characters X and synthetic
characters Y : N �M � f10; 20; 60g.

2. Number of permutations for creating the empirical
null distribution: K � 1; 000.

3. Significance level of the test: � � 0:05.
4. Number of bootstrap repetitions for computing the

reject rate of the test: T � 100.
5. The bootstrap samples are sampled (with replace-

ment) from a pool of size Nb � 100.
6. The character-to-character distance ��x; y� used is the

Hamming distance.
7. The set-to-set distance ��X;Y � used is the mean

nearest-neighbor distance.

The above test was conducted on ªeºs. The test did not

reject the null hypothesis that the samples are from the

same population for a sample size of 10. That is, the reject

rate is lower than 5 percent. For the sample size of 20,
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Fig. 9. Power plots for the local document degradation model. The
parameters for X were fixed with � � � � 1:5, while the parameters for
Y were varied. Notice that the power function has a minimum near
� � � � 1:5. The power function corresponding to a sample size of
60 (boxes) is sharper; that corresponding to a sample size of
10 (crosses) is broader.



46 percent of the time the test rejected the null hypothesis.

For sample size of 60, the null hypothesis is rejected 100

percent of the time.

7 COMPARING TWO MODELS

In the previous section, we used a two-sample permutation

procedure to test the null hypothesis that the sample of real

degraded characters and the sample generated by the

estimated degradation model are from the same underlying

population. We found that when the sample size is 40, the

test procedure rejects the null hypothesis.
In fact, in a two-sample test, if one of the samples is from

a distribution that is even slightly different from the second

sample's distribution, the statistical testing procedure will

be able to reject the null hypothesis that the samples are

from the same underlying population if the sample size is

large enough.
Since we know that any model of a real process, with

very high likelihood, is an approximation to the real
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Fig. 11. Power functions of the validation procedure when median, nearest-neighbor distance is used for the set distance function ��X;Y �. (a) When

there are no outliers. (b) Corresponds to the situation when there are five outliers in the X data set.

Fig. 10. Power functions of the validation procedure when mean, nearest-neighbor distance is used for the set distance function ��X; Y �. (a) When

there are no outliers. (b) Corresponds to the situation when there are five outliers in one of the data sets.



process, the samples generated from the model will be
different from the real samples. Thus, any validation
procedure will be able to distinguish the real and synthetic
samples if the sample sizes are large enough. In other
words, it is futile to test the equality of the distributions of
the synthetic samples and the real samples; they will always
be proved to be unequal if a large enough sample size is
used. Even if some other validation procedure is used, for
example, any method based on comparison of confusion
matrices, the equality test is always going to give a negative
result when the sample size is made large enough.

The next question is: How can one use the validation
procedure in practice if the models are always going to be
proved incorrect? The way to use the validation procedure
is to compare two models and not evaluate just one model.
That is, one can use the validation procedure to determine
which model is closer to reality.

Let us say there are two document degradation models
M1 and M2. The problem is to find the model that is closer
to the real process. We know that if the sample size N of the
synthetic and real samples is increased, after a certain point,
the validation procedure will start rejecting both models.
However, we will now give a procedure that will allow a
researcher to decide which model is closer to reality for a
fixed sample size N .

1. Fix the sample size N .
2. We are given a real sample D of size N .
3. Generate synthetic samples S1 and S2 of size N using

the models M1 and M2, respectively.
4. Conduct the two-sample validation test using the

real sample D and the synthetic sample S1: Let the
associated p-value be p1.

5. Conduct the two-sample validation test using the
real sample D and the synthetic sample S2: Let the
associated p-value be p2.

6. If p1 > p2; model M1 is closer to the real process for a
sample size of N . Otherwise, model M2 is closer.

Thus, the above procedure allows a researcher to choose
between models. When we were choosing between para-
meter settings for a fixed model, we could use the power
function to arrive at the best parameter sitting. However,
two different models have different parameter spaces and,
hence, they cannot compared using power functions. The
p-value provides a means of comparing the models on a
common basis.

8 CONCLUSIONS

We have posed the degradation model validation problem
as a statistical, two-sample, hypothesis testing problem. A
nonparametric permutation test is used for this purpose.
The user specifies a test statistic, which is essentially a
distance function on the two sets of degraded characters.
The null distribution of the test statistic, which is the
distribution of the test statistic under the hypothesis that the
two samples come from the same underlying population, is
created using a permutation procedure. The p-value
corresponding to the test statistic associated with the two
sets is computed and compared with a user-specified
significance level to reject or not reject the null hypothesis.
This procedure and several robust variants are implemen-
ted and evaluated empirically. The goodness of the distance
functions is evaluated using power functions, which are
standard statistical devices. The local degradation model
passes the validation test when the sample size is small but
rejects it when the sample size is increased. This is so
because any model of a real-world process is an approx-
imation and, thus, will not pass the test if the sample size is
increased. Another way of using the validation procedure is
for choosing between models. After the validation
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Fig. 12. Power functions of the validation procedure when 10 percent trimmed mean, nearest-neighbor distance is used for the set distance function

��X;Y �. (a) When there are no outliers. (b) Corresponds to the situation when there are five outliers in the X data set.



procedure is run, a p-value is obtained. Thus, if two
different models are tested on the same real data, each
validation procedure gives rise to a p-value for each model.
The model whose associated p-value is larger is in closer
agreement with the real data and thus should be preferred.
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